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Bio-structures owe their remarkable mechanical properties to their hierarchical geomet-

rical arrangement as well as heterogeneous material properties. This dissertation presents

an integrated, interdisciplinary approach that employs computational mechanics combined

with flow network analysis to gain fundamental insights into the failure mechanisms of

high performance, light-weight, structured composites by examining the stress flow pat-

terns formed in the nascent stages of loading for the rostrum of the paddlefish. The data

required for the flow network analysis was generated from the finite element analysis of

the rostrum. The flow network was weighted based on the parameter of interest, which is

stress in the current study. The changing kinematics of the structural system was provided

as input to the algorithm that computes the minimum-cut of the flow network. The pro-

posed approach was verified using two classical problems three- and four-point bending

of a simply-supported concrete beam. The current study also addresses the methodology

used to prepare data in an appropriate format for a seamless transition from finite element
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binary database files to the abstract mathematical domain needed for the network flow

analysis. A robust, platform-independent procedure was developed that efficiently handles

the large datasets produced by the finite element simulations. Results from computational

mechanics using Abaqus and complex network analysis are presented. The complex net-

work strategy successfully identified failure mechanisms in the bio-structure by identifying

strain localization in regions of tension, and buckling/crushing in regions of compression.

The transdisciplinary strategy used in this study identified the failure mechanisms early,

when the material was still in the linearly elastic regime, thereby tremendously reducing

the computational time and cost as compared to running a finite element analysis to failure.

This work also developed five proof-of-concept, bio-inspired models with varying lattice

complexity based on the rostrum. Performance of these bio-inspired models was analyzed

with respect to the stress and deformation. Numerical experiments were carried out on one

of the bio-inspired model to demonstrate the application of newly developed similitude

laws for blast loading. This research has laid the groundwork for an efficient design-test-

build cycle for rapid prototyping of novel bio-inspired structures by using flow network

analysis, finite element analysis, and similitude laws.

Key words: bio-structure, biomimicry, rostrum, paddlefish, flow network, finite element
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CHAPTER I

INTRODUCTION

Life has evolved from a single cell to complex biomolecules through the process of

evolution based on functional needs. A distinguishing feature that is prevalent in bio-

structures is their unique hierarchical architecture, which imparts superior characteristics

such as strength, toughness, low weight, etc. As compared to more complex, man-made

materials, bio-structures are constructed from the simplest building blocks available in

nature. Looking at nature from an engineers eye and reverse engineering the superior at-

tributes of bio-structures may help to develop structural designs possessing broader use

limits in a variety of application areas [4]. For example, the teeth of piranha have excep-

tional ability to cut through flesh. Meyers et al. proposed the design of a scissor inspired

from the teeth of piranha [5]. The design of shock absorbers has been inspired by the head

of woodpecker [6].

This research proposes to gain fundamental insight into the design and engineering

of high performance, lightweight, structured composites by examining the geometrical

and material properties of the paddlefish nose or rostrum (Figure 1.1). The motivation

behind this research effort is an earlier feasibility study that concluded that the non-uniform

geometry of the rostrum is a natural toughening mechanism used to mitigate failure [7].
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The rostrum exhibited better energy dissipation and load bearing capacity when compared

to a homogenous material with a similar geometry. The rostrum of the paddlefish has a

lattice-like, bone structure embedded in soft tissue that appears to contribute to its unique

strength and resilience. A fundamental understanding of how this lattice-like architecture

functions has the potential to provide novel insights into applications over a wide range

of disciplines. This work addresses the emergent need to develop new material designs

that are strong, tough, lightweight, and energy dissipative that can be used to protect and

support rapid deployment of the warfighter. Possible applications include protective panels,

novel building materials, body and vehicle armor, and ship design among others.

Figure 1.1

Paddlefish (Public domain image from Wikipedia)
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1.1 Paddlefish

The paddlefish (Polyondon spathula) can be easily distinguished by the presence of an

elongated rostrum as seen in Figure 1.2. It is among the most primitive of bony-finned

fishes (Osteichthyes, Actinopterygil) and, together with sturgeon, comprises an order of

secondary cartilaginous fishes, the Acipenseriformes [8]. They were once abundant in

most central US river systems. Their population decline is attributed to habitat loss and

degradation, and overharvest [9]. They are commercially exploited for their eggs, or roe

(caviar) [10–12]. Additionally, sedimentation and river modification are other reasons for

their declining population. Paddlefish are extremely mobile and have been known to travel

more than 200 miles in river systems [13]. Figure 1.3 displays the population distribution

of paddlefish as of 2009 [1].

Figure 1.2

General morphology of the American paddlefish (By Atsme - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=36033611)
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Figure 1.3

Paddlefish population distribution [1]

1.2 Rostrum Characteristics

Many biological structures have a complex interplay between intricate geometry and

heterogeneous materials [14,15] that produces uncertainty as to what is dictating the struc-

tural response. For example, the rostrum of the paddlefish is a unique structure comprised

of a network of tissue, cartilage, and interlocking star-shaped bones called stellate bones.

Figure 1.4 displays the stellate bone arrangement in the rostrum of the paddlefish. Fig-

ure 1.5 (a) displays the outer soft tissue layer of the rostrum. Figure 1.5 (b) shows the cross

section of the rostrum highlighting its three components. Figure 1.5 (c) shows the inner

hard cartilage of the rostrum, which has an elastic modulus of an order of magnitude stiffer

than the tissue. Figure 1.5 (d) shows the inner soft cartilage of the rostrum whose elastic

4



www.manaraa.com

modulus is an order of magnitude softer than the hard cartilage. As displayed in Figure 1.5,

the rostrum is characterized by a hierarchical geometrical lattice architecture and varying

material properties.

1.3 Rostrum function

Early researchers believed that the rostrum was used to dig for food [16–21] or remove

organisms from vegetation [22,23]. This theory was put aside when paddlefish were found

to be filter feeders [24, 25]. In fact, the rostrum serves multiple functions depending on

the age of the fish. In the juvenile stage, the shape of the rostrum is linear and is almost

one-third of the body length. The primary function of the rostrum at the juvenile stage is

sensory. Paddlefish have been known to swim and feed efficiently in both laminar and tur-

bulent flows. This has been attributed to their ability to detect the type of flow owing to the

sensory function of the rostrum [26]. The sensory function also aids in the detection of tiny

zooplankton without the need for sight [27]. Additionally, paddlefish make feeding strikes

at dipoles in response to weak low-frequency electrical currents [28]. During the sub-adult

stage, the shape of the rostrum is spatulate and its primary function is hydrodynamic. Dur-

ing this stage, the paddlefish are active filter feeders. During filter feeding, paddlefish take

an enormous amounts of water while swimming with their mouths wide open. The gill

rakers, which are composed of extensive comb-like filaments, assist in filtering the tiny

zooplankton from the water. Paddlefish swim faster during filter feeding and use the for-

ward body velocity to transport water at high speed to filter food quickly and efficiently.

Adult paddlefish may be able to survive without the rostrum, but they feed less efficiently

5



www.manaraa.com

Figure 1.4

Paddlefish rostrum and stellate bone arrangement
(http://www.lmrcc.org/paddlefish-primitive-fish-inspiring-future-technology/)
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Figure 1.5

Components of rostrum

and are comparatively thinner. Figure 1.6 shows a paddlefish with rostrum injuries [10].

The size, shape, and position of rostrum assist in generating lift [29]. When paddlefish

filter feed, the additional weight of the water would pose stability issues in absence of the

lift generated by the rostrum. In the adult stage, the shape of the rostrum is linear and the

primary function is mechanical.

1.4 Research hypothesis

In order to understand the superior performance of the rostrum, it is essential to identify

the failure mechanisms at early stages of loading when the material is in the linearly elastic

regime. The hypothesis of this research are described below.
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Figure 1.6

Rostrum injuries [2]
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1.4.1 Hypothesis-1

The rostrum is resilient because of enhanced toughening mechanisms. The toughen-

ing mechanisms in the rostrum may be attributed to the complex arrangement of lattice

(fractal-like) skeletal structure. By using the flow network approach, the failure mecha-

nisms in the rostrum’s complex geometry can be identified earlier when the material is still

in the linearly elastic regime.

This research hypothesis will be tested using computational mechanics experiments

that employ explicit formulations on models that are constructed from higher-order finite

elements with millions of degrees of freedom. Although finite element simulations provide

the overall distribution of stresses in the system, the underlying kinematics that governs the

formation of the strong and weak links in the system are hard to identify. This research

will investigate the emergent failure resistant mechanisms of the rostrum. Because of the

complex nature of the biological structure, a novel transdisciplinary research approach is

required to gain fundamental understanding of the role of the lattice structure in resilient

bio-structures. To fully understand the effect of local topological interaction on the global

structural response of the system at the onset of loading, the model will be formulated as a

network flow problem. The theoretical approach proposed in this research will be validated

using analytical experiments on classical engineering problems for which the solution is

known, i.e., three- and four-point bending on a simply-supported concrete beam.
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1.4.2 Hypothesis-2

If the failure mechanisms of the lattice-based, bio-structural systems are dependent

on their geometrical arrangements, then structures with more complex geometries will be

more resilient than structures with lower complexity.

To test this hypothesis, finite element experiments were carried out on conceptual pro-

totypes of bio-inspired, mechanical system models with different lattice patterns based on

the rostrum of the paddlefish. The performance of the bio-inspired structural systems were

quantified in terms of deformation and stresses.

1.5 Research objectives

Based on the research hypothesis the objectives of the current research work are as

follows:

1. Conduct finite element analysis on the rostrum using the commercial software Abaqus
to study the effect of changing displacement boundary conditions. The models for
the finite element analysis were developed from computerized tomography (CT)
scans.

2. Formulate the rostrum as a network flow problem from the nodes and connectivity
information obtained from the finite element analysis. Verify the flow network ap-
proach using two classical problems, i.e., three- and four-point bending of a simply-
supported concrete beam. Demonstrate the use of the flow network approach for
early detection of failure mechanisms when the rostrum is subjected to an external
loading condition.

3. Analyze the stress and deformations experienced by notional bio-inspired structural
systems developed based on the rostrum. The stress and deformations are obtained
from the finite element analysis conducted on the bio-inspired structural systems.

4. Use the Buckingham Pi theorem to develop a set of non-dimensional Pi terms to
scale the model to larger size and provide mathematical relations for scaling. Demon-
strate the use of the non-dimensional Pi terms for one of the bio-inspired structural
systems.
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1.6 Significant contributions

The following are the novel contributions of this research:

1. Insight was gained into the phenomena of failure mechanisms in bio-structures as
they are subjected to external load using a state of the art transdisciplinary approach.
Although significant research has been conducted on bio-structures, there is still a
lack of knowledge on what contributes to that superior performance. This research
has identified the failure patterns in bio-structure in the nascent stages of loading
when the material is still in the linearly elastic regime. A significant contribution
of this research is to gain insight into the phenomena of failure mechanisms in bio-
structures as they are subjected to external load using a state of the art transdisci-
plinary approach.

2. The new methodolody has successfully identified strain localization in tensile re-
gions, and buckling/crushing in compressive regions for the model of the rostrum.
Additionally the flow network approach was able to identify the failure sites as the
locations where the material and geometry of the structural system changes, i.e., high
stress concentration regions. This knowledge may lead to development of superior
bio-inspired structural systems.

3. The strategy developed using the Buckingham Pi theorem will provide the founda-
tion for using different materials for mimicking the resiliency of bio-structures.

4. The developed methodology identifies the failure site earlier and does not require
running non-linear finite element analyses to failure or the use of complex damage
models. Hence, this new methodology will result in a reduction of computational
cost, time, and complexity for an efficient design-test-build cycle for rapid prototyp-
ing of bio-inspired models.

1.7 Publications and presentations

The findings of the proposed research were disseminated in the publications and pre-

sentations listed below:

1.7.1 Publications
1. R. R. Patel, G. A. Riveros, D. S. Thompson, F. J. Acosta, C. Colon, E. J. Perkins, J. J.

Hoover, J. F. Peters, Performance analysis of resilient bioinspired structural systems,
Proc. SPIE 10593, Bioinspiration, Biomimetics, and Bioreplication VIII, 105930J
(27 March 2018); https://doi.org/10.1117/12.2295941.
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2. R. R. Patel, G. A. Riveros, D. S. Thompson ,J. J. Hoover, E. J. Perkins, J. F. Peters,
A. Tordesillas, Early detection of failure mechanisms in resilient bio-structures: A
complex network study, ERDC-TR-17-11, 01 October 2017.

3. R. R. Patel, D. Valles, G. A. Riveros, D. S. Thompson, E. J. Perkins, J. J. Hoover,
J. F. Peters, A. Tordesillas, Stress flow analysis of bio-structures using finite ele-
ment method and flow network approach, Finite Elements in Analysis and Design
(in press).

4. R. R. Patel, D. S. Thompson, G. A. Riveros, J. F. Peters, Dimensional analysis for im-
pact response of Bio-structures (Rostrum of Polyodon Spathula (Paddlefish)) through
application of Buckingham Pi theorem, Mathematics and Computers in Simulation
(in review).

5. R. R. Patel, G. A. Riveros, D. S. Thompson, E. J. Perkins, J. J. Hoover, J. F. Peters,
A. Tordesillas, A transdisciplinary approach for analyzing stress flow patterns in
bio-structures, SIAM Journal of Applied Mathematics (in review).

1.7.2 Presentations
1. R. R. Patel, G. A. Riveros, D. S. Thompson, F. J. Acosta, C. Colon, E. J. Perkins, J.

J. Hoover, Performance Analysis of Resilient Bioinspired Structural Systems, SPIE
2018, Denver, CO, March 6 2018.

2. Presented a seminar to the faculty and graduate students from Mathematics, Engi-
neering, Physics, and Biology departments at Colorado State University, Fort Collins,
CO, March 7 2018.

3. R. R. Patel, G. A. Riveros, D. S. Thompson, F. J. Acosta, E. J. Perkins, J. J. Hoover,
J. F. Peters and A. Tordesillas, A transdisciplinary approach to identify stress flow
patterns in resilient bio-structures, RD18, Vicksburg, MS, May 2018.

4. R. R. Patel, G. A. Riveros, D. S. Thompson, F. J. Acosta, C. Colon, E. J. Perkins,
J. J. Hoover, Computational Mechanics Analysis of High Performance Bio-inspired
structures, 82nd Annual meeting of The Mississippi Academy of Sciences, Hatties-
burg, MS, 22-23 February 2018.

5. R. R. Patel, G. A. Riveros, D. S. Thompson, Fundamentals of load transfer mecha-
nisms in bio-structures: A Complex Network Approach , Poster and oral presentation
at The Mississippi Academy of Sciences 79th Annual meeting, Hattiesburg, MS,
23-24 February 2017 .

6. Technical presentation at the American Society of Civil Engineers Vicksburg branch
meeting, June 7, 2017.
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7. R. R. Patel, G. A. Riveros, D. S. Thompson, Load transfer mechanisms of bio-
structures: A complex network approach, 33rd Annual Southern Biomedical En-
gineering Conference, Gulfport, MS, 17-19 March 2017.

8. Technical presentation at the Army User Group Review in Vicksburg, MS, August
2016.

9. R. R. Patel, G. A. Riveros, J. J. Hoover, E. J. Perkins, D. S. Thompson, Early de-
tection of failure mechanisms in resilient bio-structures: A complex network study
SIAM Workshop on Network Science, Boston, MA, 15-16 July 2016.

1.8 Dissertation outline

An in-depth literature review is presented that focuses on structural hierarchy in nature,

application of flow network, computational mechanics experiments on bioinspired struc-

tural systems, scaling of bio-inspired hierarchical structures using the concepts of dimen-

sional analysis and similutide, and the previous research conducted on the rostrum of the

paddlefish. The approach developed for early detection of failure mechanisms is discused

along with details of the flow network analysis and implementation of the methodology.

This approach was verified using two classical problems for which the solutions are known.

Results obtained by implementing the flow network approach on the rostrum are presented.

A performance evaluation of the platform independent software developed for implement-

ing the research approach is also discussed. The Results chapter demonstrates the use of

the flow network approach on the rostrum to identify failure mechanisms by indentifying

strain localization in regions of tension, and buckling/crushing in regions of compression.

A performance evaluation of five bio-inspired models is presented using stress and defor-

mation as metrics. Also included is the application of similitude laws for blast loading on

one of the bio-inspired models. The appendix demonstrates the application of similitude
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laws to represent the deformation of a structure in response to a blast load in terms of

non-dimensional Pi terms by application of the Buckingham Pi theorem.
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CHAPTER II

LITERATURE REVIEW

The field of bio-inspired material design is fairly young and largely unexploited. Nature

has optimized complex bio-structures over billions of years to have remarkable resiliency,

strength, and lightweight composition. This chapter provides an in-depth literature review

of structural hierarchy in nature with an example on how design of a prominent structure

is inspired from a bio-structure. An overview of flow networks and their current use in

multiple application areas is provided since this research uses them to identify stress flow

patterns in a resilient bio-structure.

2.1 Structural Hierarchy in Nature

Nature has progressed from a simple cell to complex organisms through evolution. The

resulting natural bio-structures have acquired unique strength and multi-function capabili-

ties through exposure to dynamic forces. Biological structural systems are made from the

simplest chemical building blocks available in nature and achieve their optimal state as an

evolutionary response to being subjected to variable loading conditions. They are of in-

terest for engineering applications because of their superior mechanical performance [30].

Additionally, they provide a wide platform for biomimicry for the purpose of designing

new materials [31, 32].
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Scientist and engineers have often taken inspiration from nature to generate sophisti-

cated solutions to engineering problems. Alexandre Gustave Eiffel utilized the enormous

load bearing capacity of the femur bone and the stability it provides for the design of

the Eiffel tower [33, 34]. It is a classic example of optimization of strength and weight.

In an attempt to gain insights for designing advanced structural materials with enhanced

flexural behavior, Meisam et al. [35] studied the asymmetric flexural response of bamboo

under various loading conditions. The superior mechanical properties of bamboo were

attributed to its unique functionally-graded hierarchical structure. Bargmann et al. [36]

analyzed the mechanical behavior of hierarchical bovine dental structure. Dental enamel

is a load bearing natural bio-composite that has evolved to resist fracture and wear. The

most remarkable property of enamel is its longevity in the presence of cracks in spite of

its high mineral content. This highly mineralized tissue avoids brittleness because of its

hierarchical structure and its nanocomposite nature comprising of soft organic matter [37].

Analysis of the structural-mechanical properties of enamel could lead to improved choices

for dental restoratives [38] or the development of body armor [37]. Burns et al. [39] mim-

icked the hierarchical design of the structural joints found in trees across multiple length

scales bridging both the laminate and structural properties of fiber-reinforced composite

materials for aerospace applications. Although some of the wood ingredients (e.g., lignin

and hemi-cellulose) are brittle, the tree branch-trunk connections have numerous vital de-

sign features that deliver high strength and toughness [40–42]. They created a composite

T-joint based on inspiration from tree branch joints by integrating laminate-level and struc-

tural design concepts into a single design. This bio-inspired composite T-joint resulted in
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tensile strength enhancement as compared to a conventionally designed T-joint. Johnson

et al. [43] conducted numerical simulations of bio-inspired, nacre-like composite plates.

Nacre, found in mollusk shells, is a biological material that demonstrates exceptional me-

chanical properties owing to its complex hierarchical structure systematized over numer-

ous length scales [44,45]. Johnson and coworkers [43] observed improved performance of

nacre-like plates as compared to standard bulk plates under a blast loading. Tran et al. [46]

demonstrated that a square, bio-inspired composite plate based on the nacre structure could

be utilized to improve the blast response of glass fibre/vinylester resin composites exposed

to underwater impulsive loading. They found that the bio-inspired composite structure

relieved the stress concentration by spreading out the damage over a large area.

2.2 Flow Networks

Flow networks can be used to study processes in physical, biological, social, and infor-

mation systems. Almost any problem that has a flow of information can be represented in

terms of a flow network. The flow of stresses in a structural system can be interpreted as a

flow network, which can facilitate the investigation of questions about failure mechanisms.

The flow of information at a given point in the system is the rate at which the information

(i.e., variables such as stresses, displacements, kinetic energy, elastic or plastic strain in

the structural system) travels. In computer science, flow networks can be used to represent

communication networks, data organization, the flow of computation, etc. Flow networks

have been used to examine interactions within various complex systems such as traffic flow,

energy flow through food webs in an ecosystem, fluid or gas flow through pipelines, infor-
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mation flow through communication networks, current flow through electrical networks,

etc.

A flow network was first used in 1930 to analyze the Russian railway system [47].

During the cold war, the US military was interested in finding the minimum number of lo-

cations that the railway system could be disrupted that would prevent movement between

the Soviet Union and Eastern Europe [47]. Vitali et al. [48] utilized flow networks to an-

alyze the community structure of company ownership and control. Their work reveals the

worldwide structure of corporate control. Barrat et al. [49] focused on scientific collabora-

tion networks and the world-wide air-transportation network, which are examples of social

and large infrastructure systems, respectively. Their work provides an enhanced expla-

nation of the hierarchies and organizational principles using the architecture of weighted

networks and delivers a quantitative and broad methodology to comprehend the complex

architecture of real weighted networks. Bullmore et al. [50] reviewed several studies that

analyzed the behavior of complex brain networks. Their work highlights the key concepts

and technical challenges in this rapidly developing field. Dewil et al. [51] showed how the

maximum covering and patrol routing problem can be modeled as a minimum cost net-

work flow problem. A classic routine for state troopers is to patrol the locations that are

prone to crashes. Additionally, these sensitive locations are only active during particular

time frames. Owing to the limited availability of resources, these locations cannot be pa-

trolled at all times. Hence, an optimization problem that routes patrol cars in a manner that

maximizes the coverage of such sensitive areas appears to be appropriate [52]. It is ad-

vantageous to have an efficient and effective solution methodology to solve the maximum
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covering and patrol routing problem since this problem frequently appears as a subproblem

in larger problems.

Numerous studies have focused on the mechanical response of granular material sub-

jected to stresses and strains [53]. The transmission of forces in granular material occurs

through a network of inter-grain contacts. This contact network is dual natured, one be-

ing strong and the other being weak [54, 55]. The process by which the material selects

which particles belong to the strong and weak force chains is unclear [56]. Lin and Torde-

sillas [57] have utilized the concepts and techniques of network optimization theory in

order to acquire an enhanced knowledge of force transmission in dense granular materials.

They analyzed the behavior of a deforming granular material under the application of a

quasi-static biaxial compression loading at different stages. The changing kinematics of

the system at the different stages were studied by representing them as flow networks. The

flow networks constructed from the evolving network of grain contacts were analyzed via

the maximum flow problem and the minimum-cost/maximum-flow problem. This study

identified the flow bottlenecks and also established a necessary and sufficient condition

for the minimum cut of the maximum flow to be unique. The bottlenecks in the flow

network develop in proximity to the persistent shear band, which is a widely studied phe-

nomenon in dense granular materials. As the grains rearrange under the application of a

quasi-static loading, some contacts break and new contacts are formed. A thorough analy-

sis of the complex contact networks at the various equilibrium states of the loading history

is conducted to determine the extent to which force transmission is optimized in a granular
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system. Lin and Tordesillas [57] attempt to uncover and understand what quantity is being

optimized (if any) when the material deforms and its constituent particles are rearranged.

2.3 Computational mechanics experiments on bio-inspired, high performance struc-
tural systems

Owing to its phenomenal development, virtual engineering has emerged as a promis-

ing field that helps to ensure that a product performs as designed under realistic condi-

tions. In the field of engineering, computational mechanics experiments are generally per-

formed using finite element computer programs (e.g. Simulia, Nastran, Ansys, Adina,

etc.) Computational mechanics experiments assist in developing a fundamental under-

standing of progressively complex problems with increasing accuracy. Numerous “what

if” scenarios can be simulated at a fraction of the cost that would be required to per-

form scaled physical experiments. Civil and marine applications require the design of

lightweight, high-performance materials that can withstand high impulsive loading condi-

tions [46]. Tran et al. [46] performed a finite element, fluid-structure interaction simulation

to analyze the failure of monolithic composite panels subjected to impact loading condi-

tions. Their numerical study compared the performance of a baseline composite panel to

a bio-inspired design with respect to total deformation and composite damage. Tran et al.

utilized the commercial finite element code Abaqus/Explicit to carry out their numerical

analysis. Their analysis provided insight and guidelines for future work on manufactur-

ing bio-inspired, high performance composite panels for protection and demonstrated that

the bio-inspired composite structure helps to relieve stress concentrations by spreading the

induced damage over large areas. This performance enhancement was acquired through
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introduction of layer waviness to one of the in-plane directions with a triangular wave

function.

Wei et al. [58] performed fluid-structure interaction simulations to simulate scale ex-

periments [59]. Their work focused on gaining insights into the deformation and failure

mechanisms of monolithic as well as sandwich composite panels. Their model was able

to calculate deformation histories, fiber/matrix damage patterns, and inter-lamina delam-

ination in both monolithic and sandwich composite panels. Furthermore, their numerical

results compared well with scale experiments [59]. Flores et al. [60] conducted a multi-

scale, finite element analysis of a novel material inspired by the mechanics and structure of

wood cell-walls. The overall constitutive behavior of the alumina/magnesium alloy fiber

was modelled as a single material defined by a large number of representative volume el-

ements. Their numerical experiments indicated that the new composite displays enhanced

toughness when the hierarchical design of wood cells was utilized. This research provides

insights into how trees and plants optimize their microstructures at the cellulose level so as

to absorb a large amount of strain energy prior to failure.

Vernery et al. [61] developed a computational framework to establish a relationship

between structure and the overall mechanical response of bio-inspired flexible composites.

Their study analyzed fish skin that possessed desirable mechanical properties like compli-

ance, resistance to penetration, lightweight, etc. Individual fish scales have a tendency to

resist penetration thereby providing a physical barrier against predator attacks. Also, the

organization of the fish scales at larger length scales delivers a skin that provides flexi-

bility for swimming. These attributes are highly desired for the next generation of body
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armor. The equations derived from this work were utilized to gain insight into the non-

linear response of the fish skin. They observed a highly anisotropic bending and torsional

response of the fish skin during indentation tests and swimming. The authors pointed out

that novel scaled structures developed using fish skin will have a broad spectrum of applica-

tions ranging from ultra-light and flexible armor systems to important future technological

developments comprising flexible electronics or the design of smart and adaptive morphing

structures for aerospace applications. Johnson et al [43] carried out a numerical investiga-

tion of nacre-like composite plates under blast loading. Their numerical study identified a

significant improvement in blast resistance performance of nacre-like plates as compared

to bulk plates. Moreover, a reduction in peak velocity and maximum deflection of the back

face was witnessed for nacre-like plates. The superior performance of nacre-like plates was

attributed to their hierarchical structure, which facilitates a globalized energy absorption

by interlayered interlocking and delamination.

2.4 Scaling Bio-Inspired Hierarchical Structures

Scientists and engineers are often posed with the challenge of replicating the behavior

of a system at a different length scale because of customer requirements or design param-

eters. The structural hierarchy observed in a natural material is built via a bottom up ap-

proach, which makes it difficult to replicate in large-scale manufacturing [62]. Moreover,

natural materials are made from weak/fragile components, but exhibit remarkably high

levels of toughness and strength. This advantage has generated considerable interest in

research centering on bio-inspired materials. Biological materials often perform multiple
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functions. They are a result of combined biological, mechanical and other processes and

represent a local optimization with respect to a set of design requirements and constraints.

Pugno’s [63] work on scaling up the adhesion characteristics of a spider to the size of a

human gives a very interesting example illustrating the power of utilizing biomimetics at

larger scales. This study utilized a mathematical formulation for optimizing the laws that

govern adhesion to develop a plausible solution for the attachment/detachment phenomena

required for developing Spiderman gloves. Pugno’s work highlights the fact that instead of

mimicking nature, the focus must be getting inspiration from nature.

Another interesting application is presented in the work of Menon and Sitti [64] in

which two climbing robots were designed based on inspiration derived from the climbing

abilities of the gecko. The first robot was designed for macro-scale application areas on

Earth as well as space. The second robot is based on microscopic-scale application ar-

eas. Through the application of compliant micro/nano-scale, high aspect ratio beta-keratin

structures on their feet, geckos efficiently climb any surface with a controlled area [65].

This work is a classic example of utilizing hierarchical structures to fit application areas by

scaling the design parameters required for manufacturing the product.

2.4.1 Dimensional Analysis

One of the elementary methodologies that is valuable in the preliminary stages of mod-

eling a problem is the investigation of the appropriate quantities upon which the problem

is dependent and the manner in which they are dimensionally related [66]. The principles

of dimensional analysis were properly recognized in the early 20th century by the formal
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proof of the Buckingham Pi theorem [67]. Simply stated, equations must be dimension-

ally homogeneous, i.e., an equation must have balanced units. This observation forms the

basis of dimensional analysis. It provides an elegant platform to understand physical data

without taking into consideration the dimensions thereby enabling the user to deduce how

a scaled system will behave. Matuszak’s [68] work focused on dimensional analysis for

different sets of problems that highlight the principles of dimensional analysis, transform-

ing equations to a dimensionless form, analyzing equations derived from experiments, and

identifying the limitations of equations in dimensionless form. Traditionally, dimensional

analysis was primarily used for experimental research. The scope of this technique has

broadened to include the analysis of model equations. A complex problem is dependent on

a number of variables and parameters. As the number of parameters and the dependencies

grow, it becomes a challenge to track the dependence on parameters and properties. Di-

mensional analysis simplifies this process by reducing the number of independent variables

through the appropriate selection of non-dimensional groups..

The flavor and power of this tool can be seen in the calculations made by the British

applied mathematician G. I. Taylor in the late 1940s to estimate the yield of the first atomic

explosion [66], which was classified information, using photographs of the blast in con-

junction with dimensional analysis. Carpenteri et al. [69] employed dimensional analysis

in their work on crack propagation in concrete. These derived scaling laws can help en-

gineers gain an understanding on how size and material property variations impact crack

growth. Clayton’s work [70] utilizes dimensional analysis to lay a foundation that provides

a systematized structure for organizing and comparing future multiscale simulations and
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validation experiments. Clayton efficiently used the principles of dimensional analysis to

analyze the ballistic penetration resistance of ceramic materials using the datasets from six

independent experimental studies. The technique of dimensional analysis also provides a

means for developing the equations of the problem under study as seen in Zong et al. [71].

Their work utilized dimensional analysis to formulate two equations for calculating the

head loss in self-cleaning screen filters in drip irrigation systems when tap and sand wa-

ter mixtures were used. Eleven parameters that impacted the head loss were used in their

analysis. Buckingham’s technique was used to represent these parameters as eight dimen-

sionless groups. The resulting equations were calibrated using experimental data. The

authors reported that the equations developed from this study provided good predictions as

compared to other similar equations found in the literature.

2.4.2 Similitude

The theory of similitude has been employed extensively for testing engineering mod-

els. A model and prototype are said to have similitude if they have the geometric similarity,

kinematic similarity and dynamic similarity [66]. Two objects are geometrically similar if

they have the same shape. They may not be the same size, but one can be obtained from

the other by either enlarging or reducing. Kinematic similarity is achieved when the fluid

streamlines around the prototype and the scaled model are geometrically similar. Dynamic

similarity requires the ratios of all forces acting on the fluid particles and boundary surfaces

for the protype and the scaled model be constant. Figure 2.1 displays the three conditions

required for a model to have similitude with a prototype. Hydraulics and aerospace engi-
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neering are the two main application areas where similitude is used for scale model testing

for fluid flow problems. Any new design concept needs to be scrutinized using rigorous

theoretical and experimental verification before it enters the production phase. Tests are

generally performed on a model that has formal similarity to the prototype. The behavior

of the prototype can be predicted based on the behavior of the model using an appropriate

set of relationships [72].

Figure 2.1

Criteria for model to have similitude with a prototype (Public domain image from
Wikipedia).

Similarity of systems is defined by a unique set of characteristic equations that en-

sures that these equations are valid for all similar systems [73, 74]. Creating similarity

amongst systems assists in forecasting performance of a system based on the results ob-

tained from other similar systems that can be studied more easily than the original system.
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Safoniuk et al. [75] used the Buckingham Pi theorem to scale up a three-phase fluidized

bed. Their study made use of dynamic and geometric similitude to derive the scaling

laws. Chouchaoui et al. [76] developed scaling laws for the elastic behavior of a laminated

cylindrical tube subjected to various loading conditions. Yazdi and Rezaeepazhand [77]

utilized similitude to design scale models to calculate the flutter pressure of delaminated

composite beam-plates under the influence of supersonic airflow. Ramu et al. [78] estab-

lished a structural similitude for elastic models built using different materials. The scaling

laws derived in their research have been validated using analytical methods on simple test

problems. Their work also made use of finite element analysis to validate the similitude

relationships between the model and the prototype. Simitses et al. [79–82] carried out

several research efforts focused on symmetrically laminated plates to identify the similar-

ity conditions between the model and the prototype. Their research makes use of scaling

laws to design scaled models and uses theoretical methods to compute the model data to

predict the behavior of the prototype. Their method is restrictive because an exact or an-

alytical form of the solution has to be derived prior to using this methodology for a given

set of problems. Ungbhakorn and Singhatanadgid [83] derived the similitude invariant for

anti-symmetrically laminated plates by applying the similitude transformation directly to

the governing differential equations of buckling. Their work derived the scaling laws for

buckling loads on laminated plates with biaxial loading conditions.
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2.5 Failure analyses in structural systems

This section provides an overview of the methods currently used for analyzing failure

in structural system. Analysis of the response of the structural system to external forces is

pivotal in determining if the structural design will be able to withstand the internal stresses

generated by the loads other than the design loads. Several techniques are available to

measure the response of the structural system to external forces. Existing methods such

as acoustic emission [84–90] and digital image correlation [91–100] provide a means to

measure/quantify/determine the strains/deformations experimentally. From the modelling

perspective, there are continuum-based [101–103] and discrete or lattice-based [104–106]

approaches. These approaches satisfy the physical laws governing the system and provide

the information required for analysis of the structural system. However, obtaining infor-

mation regarding the influence of local topology on the global performance of the system

requires additional information. Although Tordesillas et al. [107] and Lefort et al. [108]

have successfully used mathematical approaches to identify patterns that are formed by

the local topological interactions that govern the global response of the system; their work

is conducted at the mesoscale. To the author’s knowledge, advanced mathematical algo-

rithms have not been used with continuum-based models to gain fundamental insight into

the failure mechanisms of bio-structures. Since bio-structures are geometrically optimized

at the coarsest level of hierarchy, the information obtained at the local topology level will

provide new insights that could be utilized to identify optimal geometrical configurations

that make bio-structures resilient and lightweight.
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2.5.1 Shear bands in dense granular media

The formation of shear bands is a unique characteristic of degradation and failure in

many materials. Although considerable research has been focused on understanding them,

the origin and formation of shear bands still remains a mystery [107, 109, 110]. At the

onset of loading, the ultimate shear band pattern was observed to be encoded in the grain

kinematics [109]. Tordesillas et al. [109] seek to investigate the development of bottle-

necks in transmission of force through the contact network by applying network flow

theory [111, 112]. In this case the flow network is formed from the contact network of

the material [111, 113, 114]. Tordesillas’s [111] work maps the contact network at each

equilibrium state in the deformation history to a flow network and solves the maximum-

flow/minimum-cut problem. The bottlenecks in the force transmission that are recognized

by the minimum-cut disclose that the localization of deformation into shear bands is a pro-

gressive phenomenon of degradation that starts almost at the onset of loading. Although the

grains whose contacts form the bottlenecks are continuously changing from one equilib-

rium state to another, these bottlenecks eventually become spatially localized at the onset of

loading history in the region where the persistent shear band finally forms. These findings

are in agreement with the results from multiscale analysis of vortices from simulations and

experiments in 2D [107, 115]. The formation and location of the bottlenecks is influenced

by both local and global properties of the material. Tordesillas et al. conclude that the

early identification of bottlenecks in force transmission open up new avenues for detection

as well as manipulation of the approaching failure in granular systems.
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2.5.2 Failure analysis in quasi-brittle materials

Macro cracks in quasi brittle material are formed by the combined effects of micro-

crack propagation, interaction and coalescence, which are situated within the Fracture Pro-

cess Zone (FPZ). Lefort et al. [108] employs statistical analysis to gain detailed insight into

the evolution of the FPZ. Ripley’s function [116] is utilized to identify patterns in image

analyses. Ripley’s K function is employed to characterize the randomness in the spatial

spreading of point distributions. It has been widely used in spatial ecology and has also

been used to identify the development and spreading of diverse patterns, e.g., cell migra-

tion [116], tree [117] and plant [118] dissemination, or disease spreading [119]. Ripley’s

function as applied to damage mechanics is described in detail in Lefort et al. [26]. The

cracking process at the mesoscale of a concrete specimen is analyzed in detail. Lefort at al.

conducted both numerical and experimental analyses on concrete. The numerical model

used in their study is a lattice-based approach that produced good agreement with experi-

ments integrated with acoustic emission analyses. This signifies that the numerical model

could be used in conjunction with Ripley’s post processing technique to examine the evo-

lution of the correlation length upon failure. Numerical experiments were performed with

direct tension as well as three-point bending tests. Their results show that the extracted

correlation length is not constant during failure and is dependent on the type of loading

applied to the same specimen. This research may open up new paths that would result in

non-local continuum modeling at the macroscale level.
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2.5.3 Comments on the mesoscale approach

The approaches used by Tordesillas et al. [111] and Lefort et al. [108] have been used

at the mesoscale level to analyze failure mechanisms in two completely different struc-

tural systems. Experimental and numerical tests on structural systems produce abundant

data that could be analyzed efficiently by employing advanced mathematical algorithms.

Although these approaches were used for discrete models, they also laid the foundation

for applying multidisciplinary approaches to identify failure patterns in structural systems.

Both applications demonstrate that the local topological interactions are a major contribu-

tor to the global structural response. Obtaining this information at the onset of loading will

open up avenues to obtain insight into the failure mechanisms and possibly suggest novel

approaches to alter and modify the phenomena and location failure site. Also, if the loca-

tion of failure is identified earlier than its occurrence, there is a possibility of developing

a relationship that will define the amount of external forces required for the structural sys-

tem to fail at that location. This information can be used not only to design new structural

systems but also for assessment of existing critical infrastructure.

2.6 Previous research on the rostrum

Research conducted on the rostrum of the North American paddlefish revealed that it is

distinct and complex with no functional counterpart in any other species. It is long, broad,

and flat, rounded at the tip, and rhomboidal in cross-section. The cartilage endoskeleton

consists of a central gelatin-filled tube, flanked by two buttresses, and supports a lattice-

like network of small inter-connecting stellate bones [22–24]. The bone diameter is larger
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near the center of the rostrum and smaller near the edge, but the pattern is not obvious.

The relative size and shape of the rostrum are highly variable in juveniles [25], less so in

sub-adults and adults [29]. Rostra in other species of fish consist of flat blades of solid

cartilage (sawfishes and some sharks) or simple tubes of bone (swordfish, marlin, etc.) and

do not vary appreciably in size or shape within species. Swimming enhancement induced

by the rostrum has been extensively studied [1, 21, 120]. The modeling and analysis of

the stress state and strain rate dependence behavior of cartilage have been conducted by

Deang. et al. [121]. Allison et al. [122] characterized the rostrum’s stellate bones. Recent

computational analysis efforts revealed the rostrum has far greater attributes of energy dis-

sipation and impact resistance when compared to man-made engineered systems [6]. The

rostrum’s lattice structure is the major contributor for the superior performance. However,

the lattice is an indeterminate, non-linear structure with varying material types, and ma-

terial properties, with non-uniform stiffness and irregularly-shaped members. Knowledge

is lacking on how the geometrical assembly of the structure impacts its high-performance

strength/toughness characteristics.

2.7 Summary

Bio-structures have, in general, demonstrated superior characteristics as they evolved

to serve multiple and specific functions. Since bio-structures are made of heterogeneous

materials and possess hierarchical geometry, it is difficult to identify the major contributor

to their structural response. Also, owing to the complex geometry of the bio-structures, the

computational mechanics experiments employed to analyze them will produce large data
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sets. This research seeks to answer the following questions: Is the superior performance

of bio-structures because of the heterogeneous material properties, is it the hierarchical

geometry, or is it a combination of both? Is there a preferred configuration that shows

optimum performance? Can it be identified through the application of the flow network

approach?

The end product of this research is visualized to be a problem-driven, solution-centered

approach that integrates mathematics, mechanics and computational sciences for a rapid

design, test, and build cycle. Based on current work related to the proposed effort, the fol-

lowing observations can be made on the feasibility of the transdisciplinary computational

mechanics/mathematics approach:

1. Although the scientific community has done significant research to analyze struc-
tures created by nature, there is still a considerable lack of understanding as to why
bio-structures possess high-performance strength/toughness characteristics.

2. Flow networks have been used to study a variety of complex problems and patterns.
They have also been used in conjunction with a discrete element model to unravel
the location of the persistent shear band in dense granular media. However, this ap-
proach has not been used to study the complex geometrical hierarchical configuration
of bio-structures.

3. Since the existing methods do not provide sufficient means to obtain a fundamental
understanding of the redundant lattice architecture, a new transdisciplinary approach
is required.

4. Dimensional analysis and similitude are a set of powerful mathematical tools that
have been utilized in a broad range of applications. Scaling structural hierarchy from
observations derived from finite element analysis and flow networks will provide a
unique outlook towards an integrated use of these potent tools.

5. Similitude has generally been applied to scale models to reduce cost and complexity.
In this research, similitude laws were utilized to scale up a model by conducting
numerical and mathematical analysis on a smaller scale, bio-inspired model.
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CHAPTER III

RESEARCH APPROACH

Computational mechanics experiments carried out on the rostrum revealed that the ros-

trum has exceptional energy dissipation and load bearing capacity as compared to man-

made systems [6]. The motivation provided by these findings laid the foundation of this

research work. This research proposes to gain fundamental insights into the design and

engineering of high-performance, lightweight, structured composites by investigating the

load-bearing characteristics of the hierarchical lattice architecture of the paddlefish ros-

trum. A fundamental understanding of how this lattice-like architecture functions has the

potential to impact applications over a wide range of disciplines (e.g., protective panels,

novel building materials, body and vehicle armor, and ship design among other possible

uses). This chapter describes the research approach and illustrates the implementation of

the approach on a demonstration model constructed from a small part of the rostrum.

3.1 Transdisciplinary research approach

Figure 3.1 provides a flowchart of the research work plan. Since bio-structures are

composed of hierarchical lattice geometry and varying material properties, it is difficult to

design experiments to determine the major contributor to their structural resiliency. Hence,

it becomes necessary to understand the influence of local topology on the global structural
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response. Based on these findings, a transdisciplinary research approach is required to

investigate failure mechanisms of the rostrum.

As shown in Figure 3.1, the first step will involve the construction of a 3D model using

multiple CT scans of the rostrum. A numerical representation was developed from the 3D

model that was used for computational mechanics experiments on the rostrum subjected to

external loading. For this research, the finite element experiments were performed using

the commercial package Abaqus. Although the finite element simulations give an over-

all distribution of stresses in the system, the underlying detail provided by the changing

kinematics of the systems that play a vital role in the load transfer mechanisms and for-

mation of the strong and weak links in the network are missing. Towards this end, the

loading of the rostrum was formulated as a network flow problem. The nodes and edges of

the rostrum’s network were extracted from the model used in the finite element analyses.

The flow network was weighted based on the parameter of interest, which was Von-Mises

stress. The kinematics of the structural system changes when it is under the influence of an

external loading condition. The results from the finite element analysis were input to the

network flow algorithm that computes the maximum flow of the stresses.

3.2 Computational mechanics experiment on rostrum

To obtain an understanding the material response of the rostrum, high performance

computational mechanics simulations are performed using Abaqus 6.13 [123]. A general

static analysis is conducted on the rostrum using Abaqus/standard. The complexity and

volume of data involved in such an analysis requires the use of a high performance com-
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Figure 3.1

Transdisciplinary research flowchart
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puting environment. Owing to the complexity of the geometry and the analysis, each job

was executed on ERDC’s High Performance Computing facilities located in Vicksburg,

MS. Figure 3.2 shows the image of the Cray XE6 -1.5 PFLOPS (Garnet) located at the

ERDC’s High Performance Computing Modernization Program (HPCMP) Department of

Defense (DoD) Supercomputing Resource Center (DSRC).

Figure 3.2

Garnet. Cray XE6 - 1.5 PFLOPS (Courtesy of ERDC-HPC-DSRC)

3.3 Flow network

The road network is the most practical implementation of flow networks. Road net-

works can be represented as a directed graph in order to identify the shortest path from

point A to point B. In a similar manner, the flow of stresses in a structural system can be

interpreted as a directed graph, which facilitates the investigation of questions about fail-

ure mechanisms. Intuitively, the flow of information at a given point in the system is the

rate at which the information (i.e., variables such as stresses, displacements, kinetic en-
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ergy, elastic or plastic strain in a structural system) travels. Each edge in a directed graph

can be compared to a channel through which information passes and has a corresponding

capacity that is representative of the maximum rate at which information can be passed

through the edge (e.g., 100 gallons of liquid per second through a pipe or 11 amperes of

electrical current through a wire). Vertices of the graph are the points where the edges

connect. All vertices in the graph, except the source and sink, have information flowing

through them (i.e., the rate at which information enters the vertex is identical to the rate at

which information leaves the vertex). In other words, the flow is conserved in a manner

similar to Kirchhoff’s current law.

Complex networks separate the physics of the problem from the data and map the prob-

lem an abstract domain where calculations are performed. Then, the solution is mapped

back to the physical domain. The research described here develops new methodologies that

will provide the foundation for using flow network algorithms with efficient vector-based

programming to tackle highly complex and evolving data obtained from finite element

analysis and experiments.

To gain a fundamental understanding of the superior performance of the rostrum, the

current research employs complex network analysis. A novel mathematical technique is

employed to formulate the rostrum as a network flow problem [124, 125]. To achieve this,

a flow network graph G= (V, E) is developed from the finite element model of the rostrum

such that:

1. V represents the nodes obtained from the finite element model of the rostrum. As
shown in Figure 3.3(a), for a hexahedral element in a finite element model, the nodes
are 1, 2, ..., 8.
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2. E represents the edges connecting the nodes in V and is obtained from the connectiv-
ityA between the nodes. The edges of the hexahedral element shown in Figure 3.3(a)
are {(1, 2), (2, 3), (3, 4), (4, 1)} for face 1.

3. Each edge, (u,v)∈ E, has a capacity C associated with it which is representative of the
maximum amount of flow that could be transmitted through the edge. The capacity
calculation for edge (1, 2) is shown in Figure 3.3(c). The capacity for edge (1, 2) is
the average of the Von-Mises stresses at nodes 1 and 2.

4. The Von-Mises stresses (shown in Figure 3.4) at each node are calculated using the
average of the integration points shown in Figure 3.3(d).

Two nodes are identified in the network to serve as the source s and sink t nodes such

that the flow can be transmitted from the source node s to the sink node t. The selection of

these nodes will be dependent on the boundary conditions that are applied to the rostrum.

For example, if the rostrum is subjected to compression loading from the top and bottom,

the source and sink nodes can be selected from the top and bottom loading surfaces, re-

spectively. From Newton’s third law of motion it can be inferred that the transmission of

flow along each edge is symmetric. Hence, the flow from source to sink is identical if the

source and sink nodes are swapped.

3.3.1 Flow networks and flows

A flow network is a directed graph G(V,E) consisting of a finite set of vertices together

with a subset of ordered pairs of nodes that represent the edges. Each edge (u, v) ∈ E has a

non-negative capacity c(u, v) ≥ 0. It is assumed that c(u, v) = 0 if (u, v) 6∈ E. Therefore,

two nodes are identified in a flow network; a source s and a sink t [113,126,127]. It is also

assumed that every node belongs to a certain path that connects the source and sink (i.e.,

for each node v ∈ V , there is a path s→ v → t). In other words, the graph is connected.

39



www.manaraa.com

Figure 3.3

(a) Node numbering in an 8 node hexahedral element (b) Hexahedral element faces in a 8
node hexahedral element (c) Capacity calculation for edges in flow network graph (d)

Integration points on a 8 node hexahedral.
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Figure 3.4

Von-Mises stress equation expressed by the six stress components.

A flow in G defined by the real-valued function f : V × V → R , is a feasible flow

vector if it satisfies the following constraints:

1. Capacity Constraint: ∀u, v ∈ V , requires that f(u, v) ≤ c(u, v), the flow cannot
exceed the capacity of the respective edge

2. Conservation of flow: ∀u, v ∈ V − (s, t), requires that

(a) Σv∈V f(u, v) = 0

(b) The total flow entering a node must equal the total flow leaving that node pro-
vided the node is not a source or sink node

3. The total flow leaving the source node s must be equal to the total flow entering the
sink node t
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3.3.2 Maximum flow in a flow network

Given a flow network G(V,E), with source s and sink t such that there are no incoming

edges at the source and no outgoing edges at the sink, the maximum flow problem can be

defined as follows:

A maximum flow f, from source s to sink t, is a function that satisfies the capacity and

conservation constraints described above and its value is defined as follows:

val(f) = max(f).

The maximum flow problem, as described above, can be solved by applying the Ford-

Fulkerson algorithm [113].

3.3.3 Ford-Fulkerson Algorithm

For a connected graph G(V,E), the flow f in G, which is the total flow that leaves the

source node s and the total flow that enters the sink node t, is defined as follows:

| f |= ∑
v∈V

f(s, v) =
∑
v∈V

f(v, t).

The residual capacity of the node pair(u, v), or cf (u, v) is defined as:

cf (u, v) = c(u, v)− f(u, v).

The value of residual capacity is used to determine how much flow can be transmitted

between a given set of nodes.

The residual network of G induced by f is the graph Gf = (V,Ef ) such that

Ef = (u, v) ∈ V × V : cf (u, v) > 0

For each edge (u, v) ∈ E do

f [u, v]← 0
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f [v, u]← 0

While ∃ (there exists) a path p from source s to sink t in the residual network Gf do

∆← min[cf (u, v) : (u, v) ∈ p]

For each edge (u, v) in p do

f [u, v]← f [u, v] + ∆

f [v, u]← −f [u, v]

3.3.4 Maximum-flow/minimum-cut theorem

A cut of a flow network G(V,E) is defined as a set of vertices (E1, E2) that partition

V into E1 and E2 = V − E1 such that s ∈ E1 and t ∈ E2. If f is a flow, then the net

flow across the cut (E1, E2) is defined as f(E1, E2). The capacity of the cut (E1, E2) is

c(E1, E2).

A minimum E1 − E2 cut problem involves minimizing c(E1, E2). That would mean

the identification of E1 and E2 in such a manner so as to find the minimal capacity of the

E1 − E2 cut.

In combinatorial optimization theory [124], the maximum-flow/minimum-cut theorem

states that in a flow network G(V,E), the maximum quantity of flow f travelling from the

source node s to the sink node t is identical to the total weight of the edges in the minimum-

cut. Essentially speaking; the smallest total weight of the edges which, if removed, would

cause the source to be totally disconnected from the sink.
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3.4 Analytical verification of research methodology

This section provides the verification of the flow network approach to identify fail-

ure mechanism. Two classical problems with known solution are chosen for verification.

The customary technique for verifying a simulation is to employ a problem that is simple

enough to have an analytical solution and similar enough to the phenomena that is being

simulated so that a meaningful extrapolation to the actual problem is feasible. By doing

so, the numerical and analytical solutions can be compared and fundamental shortcomings

with either the methodology or the numerical approach used to solve the problem can be

identified. To verify the current research methodology, two classical problems are chosen.

The problem descriptions and methodology implementations follow in the subsections be-

low.

3.4.1 Problem 1: Three-point bending of a simply-supported beam

To verify the flow network approach used in the current research, a simply-supported

beam with a concentrated load at its midpoint, as shown in Figure 3.5, was chosen. A

schematic of the beam with this loading condition and the shear and moment diagrams are

shown in Figure 3.6 [3].

Abaqus was used to perform the finite element simulation for a concrete beam of length

216 in, width 36 in, and thickness 6 in. A mass density of 8.67e−011slug/in3, Young’s

modulus of 3∗106psi, and Poisson’s ratio of 0.3 were used for the concrete material model.

The Abaqus mesh used for validation model consisted of 73,278 quadratic tetrahedral el-

ements comprising of 117,709 nodes. The Von-Mises stresses obtained from the finite
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Figure 3.5

Three-point bending of a simply-supported concrete beam with symmetric loading at
center

element simulations are plotted in Figure 3.7, which shows the overall stress distribution

in the beam subjected to a pressure of 100 MPa at the center. The simulation was carried

out using the dynamic, explicit method in Abaqus for a total time of 0.005 s. Geometric

non-linearity effects were included.

The node and connectivity information were extracted from the finite element model

using the procedure outlined in Figure 3.22 to construct a flow network. The network was

weighted based on the Von-Mises stress values from the Abaqus results. The source and

sink combinations were selected from the high stress areas on the top and bottom surfaces

of the beam, respectively. The result of the network flow analysis is shown in Figure 3.8.

The minimum-cut identified by the mathematical algorithm is represented by blue line in

Figure 3.8. The minimum-cut denotes a set of edges in the flow network that inhibit the

transmission of flow or form the bottlenecks of transmission, i.e., the flow network analysis

highlights the regions of the beam where the failure mechanism initiates. For this problem,
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Figure 3.6

Shear and bending moment for a simply-supported beam with a concentrated load at the
center [3]
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Figure 3.7

Maximum principal stresses for three-point bending of a simply-supported concrete beam

the network analysis shows the expected behavior of a beam subjected to a concentrated

load at the center line. Failure for this classical problem initiates with a crack at the bottom

face at the midspan of the beam that continues to grow as the load increases. Hence,

the proposed methodology for detecting the failure mechanisms in the nascent stages of

loading from the computational mechanics experiment and flow network approach was

verified using a simple problem with a known solution. The flow network approach does

not require running non-linear finite element analysis that uses damage models to failure.

Early identification of failure using this approach results in reduction of computational

cost, time, and complexity.

3.4.2 Problem 2: Four-point bending of a simply-supported beam

The dimensions and material of the model used for Problem 2 are identical to the

concrete beam used in Problem 1. For this problem, the concrete beam was simply-
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Figure 3.8

Flow network result for three-point bending of a simply-supported concrete beam

supported with two equal forces applied equidistant from the supports as shown in Fig-

ure 3.9 [128, 129]. A schematic of the beam with this loading condition and the shear and

moment diagrams are shown in Figure 3.10 [3].

The maximum-flow/minimum-cut algorithm was employed to investigate seven sce-

narios. The source node in each scenario was chosen to be a vertex where the force is

applied while the sink node was chosen to be a point in an area where a stress variation

was visually identified based on the the maximum principal stresses shown in Figure 3.10.

Seven sink nodes were selected. The network flow algorithm was executed seven times

using these source-sink combinations. The results were superimposed since the material

was in the linearly elastic regime.

Figure 3.12 shows the superimposed result produced by running the maximum-flow/minimum-

cut algorithm. The minimum-cut has clearly identified the shear patterns on the left and

right corners and flexure patterns in the center highlighted by the white lines in Figure 3.12.

These shear and flexure patterns govern the phenomena of failure mechanism in this prob-

lem. The network flow strategy identified these patterns at the onset of loading when the
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Figure 3.9

Four-point bending of a simply-supported-concrete beam

material was still in the linearly elastic regime and did not require running the finite ele-

ment simulation to failure.

3.4.3 Summary

Verification and validation play an important role in scientific computing. They provide

the foundation of building confidence in modeling and simulation. The results shown in

this chapter have verified the proposed research approach using two classical problems

for which the solutions were known. The following observations can be made about the

research approach that uses flow network and finite element analysis for early detection of

failure mechanism:

1. For the problem of three-point bending of a simply-supported concrete beam, the
flow network approach captured the expected behavior of a beam subjected to a load
at the center. The flow network approach successfully identified the regions of the
beam where the failure mechanism initiates.

2. For the problem of of four-point bending of a simply-supported concrete beam, the
flow network strategy clearly identified the shear patterns on the left and right corners
and the flexure patterns in the center. The failure mechanism is governed by these
shear and flexure patterns.
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Figure 3.10

Shear and bending moment for four-point bending of a simply-supported concrete
beam [3]
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Figure 3.11

Maximum principal stresses for four-point bending of a simply-supported concrete beam

Figure 3.12

Flow network result for four-point bending of a simply-supported concrete beam
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3. In both cases, the integrated flow network and finite element approach identified
these patterns at the onset of loading when the material was still in the linearly elastic
regime and did not require running a non-linear finite element analysis that employed
damage models until the material failed. This results in reduction in computational
cost, time, and complexity.

3.5 Rostrum model

An X-ray CT was performed on the paddlefish rostrum using the Phoenix v|tome|x.

Figure 3.13 shows the rostrum of the paddlefish and the X-ray CT scan that was developed

by combining multiple CT scans [121] from which the computational model was obtained.

Figure 3.14 shows the tissue component of the rostrum, which is the outermost layer of

the rostrum that encompasses the hard cartilage shown in Figure 3.15 and the innermost

soft cartilage displayed in Figure 3.16. The soft cartilage is located in the central portion

of the rostrum. The hard cartilage branches out from the center of the rostrum toward the

edges of the rostrum as shown in Figure 3.15 and Figure 3.17. The computational models

of the three parts were individually imported into the commercial software Abaqus. These

complex parts were meshed using a combination of hexahedral and tetrahedral elements.

The details of the mesh are provided in Table A.4.

3.6 Stress contours of the rostrum subjected to a blast load

Figure 3.18 displays the non-dimensionalized Von-Mises stress for the rostrum proto-

type. Further details of this analysis are provided in Appendix A. Finite element simu-

lations were conducted for the rostrum subjected to a blast load. Von-Mises stresses on

the three-components of the rostrum namely, the outermost soft tissure, the inner hard

cartilage, and the innermost soft cartilage, are displayed in Figure 3.18. For illustrative
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Figure 3.13

X-Ray CT scans performed on rostrum

Figure 3.14

Tissue mesh
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Figure 3.15

Hard cartilage mesh

Figure 3.16

Soft cartilage mesh
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Figure 3.17

Cross section of mesh assembly of the three components of rostrum (i.e., tissue, hard
cartilage, and soft cartilage).

purposes, Section 3.7 describes the procedure by which a small part of the hard cartilage

is represented as a flow network.

3.7 Demonstration model to represent the rostrum as a network flow problem

The output from the finite element model was provided as input to the complex network

algorithm to gain insight into the underlying kinematics. For fractal and discrete systems,

force chain networks are known to be the key for load transmission [55–57]. When the

networks are short circuited, deformation ensues. While complex networks have been

used to examine interactions within various complex systems as outlined in Chapter 2, this

technique has not been used to study the failure mechanism in the complex geometrical

hierarchical configurations characteristic of bio-structures.

The demonstration of the flow network approach through a toy network constructed

from a small region of the rostrum is shown in Figure 3.19. Recall that, for a given flow
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Figure 3.18

Non dimensional Von-Mises Stresses on top surface of the three component parts of the
rostrum prototype subjected to blast load (Details of model and experiment is provided in

Appendix A)
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network, the maximum flow is equal to the capacity of the minimum-cut [130]. Using

the Ford-Fulkerson algorithm described previously in Section 3.3.3, the capacity of the

minimum-cut is determined. For example, for the flow network shown in Figure 3.19, the

possible cuts are:

1. (1-2), 1-6)

2. (10-9), (7-9), 13-9)

3. (6-7)

The minimum source-sink cut is (6-7) which has a capacity of 26 (highlighted in red in

Figure 3.19). Based on the flow patterns established at the onset of the load application,

the complex network approach can aid in detecting the failure site much earlier (i.e., before

the material fails or when the material is in the linearly elastic regime of the stress strain

curve) than any computational or analytical methodologies.

The nodes V and the edges E of the flow network are obtained from the finite element

model created in Abaqus using a python script. The capacity C of the edges is obtained

from the output database file created from the finite element experiment. A DIMACS

[131] format file is created using a C++ program developed specifically for this research.

For the demonstration flow network shown in Figure 3.19, the DIMACS file is shown in

Figure 3.20. The lines in Figure 3.20 that begin with “c” are comments. The problem

line that begins with a “p”, defines the type of problem that is being solved. In this case,

it is the maximum flow problem, followed by the total number of nodes and links, which

in this case are 13 and 15, respectively “p max 13 15”. The comment line “c source” is

followed by the line that begins with an “n” followed by the node number that represents
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the source node “n 1 s”. The comment line “c sink” designates the sink node, Node 9,

which is represented by “n 9 t”. The lines beginning with “a” describe the arcs or edges of

the flow network. There are 15 arcs in the demonstration model.

This DIMACS file represents one static state extracted from the output database file. As

the kinematics of the system changes, several DIMACS files will be generated to represent

the changing state of the system under the influence of the external load. The DIMACS file

created using the above procedure was input to the maximum-flow/minimum-cut algorithm

described by Boykov and Kolmogorov [132]. Figure 3.21 shows the output obtained from

using the maximum-flow/minimum-cut algorithm. As shown in Figure 3.21, the maximum

flow is 26. Also, the nodes get flagged as either 0 or 1, i.e, they either belong to the

source or the sink, respectively. The coordinate information of the nodes is extracted from

the finite element input file. Paraview [133] is used to plot the output of the maximum-

flow/minimum-cut algorithm.

Figure 3.22 shows the flowchart of the formulation of a small part of the rostrum as a

network flow problem. The bio-structure (rostrum of paddlefish) is formulated as a net-

work flow problem using the software developed for this study following the four steps

outlined below. The key issue addressed in the current software is the requirement to link

information between different tools used in the analysis. The flow network graph is gen-

erated from the binary output database files generated by the finite element analysis. This

procedure is executed in four stages as shown in the flowchart in Figure 3.22. In stage

1, the flow network is constructed using the nodes and connectivity information from the

finite element analysis. In stage 2, the flow network is weighted based on the parameter
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of interest (stresses in the current study, also obtained from the finite element analysis). In

stage 3, a DIMACS format file is created that represents the flow network graph. In stage

4, the DIMACS file is provided as input to the mathematical algorithm that calculates the

minimum-cut of the flow network graph. The details of the procedure involved in the four

stages are described subsequent subsections below.

3.7.1 Stage 1 – Obtain connectivity information

The finite element model of the bio-structure was created in Abaqus and a python

script was employed to extract the connectivity information. This script was written in

python since Abaqus supports data extraction and manipulations through this programming

language both within its graphical user interface and through the command line. This script

outputs the connectivity data to a text file. Table 3.1 displays the file produced by executing

the python script on the computational model of rostrum. The connectivity information file

shown in Table 3.1 comprises three columns. Column 1 displays the node ID. Column 2 is

the total number of nodes to which the node displayed in column 1 is connected. Column

3 displays the IDs of the nodes to which the node displayed in column 1 is connected, i.e.,

the valent nodes.

3.7.2 Stage 2 – Obtain weight information from the finite element analysis

In stage 2, the weights or capacity for the flow network graph are obtained from the

binary output database files produced by performing computational mechanics experiments

on the bio-structure. The weights or capacity correspond to the parameter of interest, e.g.,

stress. A python script is also employed to carry out this task.
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Table 3.1

Connectivity extracted from finite element model of bio-structure

Node ID Total connecting nodes ID of connecting nodes
1 6 3, 2, 4, 7, 30, 2073
2 11 3, 1, 4, 5, 6, 7, 8, 9, 30, 34, 36
3 9 1, 2, 4, 5, 6, 7, 10, 2073, 2074
4 12 2, 1, 3, 5, 30, 34, 33, 2073, 2074, 2075, 2092, 2093
5 7 2, 3, 6, 4, 34, 33, 35
6 6 3, 2, 5, 7, 9, 10
7 14 1, 2, 3, 8, 9, 6, 10, 36, 30, 37, 2073, 2094, 2095, 33091
8 5 2, 7, 9, 36, 330914
9 6 7, 8, 2, 6, 10, 330913

10 6 7, 6, 3, 9, 330915, 332045
11 6 13, 12, 14, 2076, 330984, 331025

3.7.3 Stage 3 – Generate DIMACS format files from connectivity and weight infor-
mation

The third stage involves the production of a DIMACS formatted file [131] based on the

weight or capacity of each node, as obtained in stage 2, and its connectivity information

obtained in stage 1. In essence, the DIMACS file describes a network of interconnected

nodes that forms an abstract structure known as a graph. A graph is a representation of

information simplified as a collection of nodes, their weights, and the union between these

nodes, which is known as an edge or a link. The DIMACS file for the notional flow network

shown in Figure 3.19 is shown in Figure 3.20. The DIMACS file is created using a C++

program developed specifically for this research.
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Figure 3.19

A demonstration model constructed from a small part of the rostrum to illustrate the
modus operandi of maximum-flow/minimum-cut (MFMC) algorithm
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Figure 3.20

DIMACS format file for demonstration flow network represented by Figure 3.19

Figure 3.21

Output from the maximum-flow/minimum-cut algorithm
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Figure 3.22

Flowchart depicting the formulation of a small part of rostrum as a network flow problem

63



www.manaraa.com

3.7.4 Stage 4 – Run flow network analysis on the DIMACS file

The DIMACS file created using the procedure outlined in stage 3 is input to the maximum-

flow/minimum-cut algorithm described in Boykov and Kolmogorov [132]. The theoretical

worst case complexity of this algorithm is O(nm2|C|), where n represents the number of

nodes,m represents the number of edges, and |C| is the cost of the minimum-cut. Although

the theoretical complexity of the algorithm is high, it outperforms standard algorithms used

for identification of the minimum-cut in a graph [132]. Figure 3.21 shows the output ob-

tained using the maximum-flow/minimum-cut algorithm. As shown in Figure 3.21, the

maximum flow is 26. The maximum-flow/minimum-cut algorithm requires the source and

sink to be in different subsets. Accordingly, the nodes get flagged as either 0 or 1 indicat-

ing that they belong to either the source or the sink, respectively. In a structural system,

the maximum flow is the flow of stresses between nodes over all feasible routes without

exceeding the strength of the system; furthermore, the minimum-cut will represent the lo-

cation where the strength of the system is exceeded. The coordinate information for the

nodes is extracted from the finite element input file. Paraview [133] is used to display the

output of the maximum-flow/minimum-cut algorithm.

3.8 Summary

This chapter describes the integrated, interdisciplinary approach proposed in the current

research. The capabilities of the software developed for this study can be summarized as

follows:

1. The finite element model is developed in a Windows environment and the simula-
tions are executed on ERDC’s high performance computing systems because of the
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size and complexity of the problem. The C++ program developed for this research
is robust enough to tackle the issue of platform independency.

2. The rostrum is comprised of three component parts. When the data from the fi-
nite element simulations of the rostrum is mapped from the physical domain to the
abstract domain, the software explicitly keeps track of the parts belonging to the dif-
ferent components. The software developed for analyzing the stress flow pattern is
sufficiently robust to handle any structural system comprising variable constituent
parts.

3. The numerical representation of the bio-structure has millions of degrees of freedom
because of the geometrical complexity of the components. The nodes on the bound-
ary of the components are shared by multiple regions. The C++ program keeps track
of nodes belonging to a boundary region. The software has the capability to tackle
highly complex and large datasets.

4. The user has the capability to view the results of the flow network computation for
the three component parts of the rostrum together or separately.
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CHAPTER IV

RESULTS

This chapter demonstrates the application of flow network approach for early identifica-

tion of failure mechanisms in the rostrum of the paddlefish. Three displacement boundary

conditions were used to analyze the effect of changing boundary conditions. A perfor-

mance evaluation of five bio-inspired models was conducted using stress and deformation

as metrics. This chapter also presents the application of similitude laws for blast loading

on one of the bio-inspired models.

4.1 Identification of failure mechanisms in the rostrum of the paddlefish

Although computational mechanics experiments provide the overall distribution of

stresses in the structural system, the information about the stress flow patterns formed

in the nascent stages of loading are missing. Identification of the stress flow patterns in

the linearly elastic regime may lead to novel insight into failure mechanisms through iden-

tification of the location of stress concentration areas developed in response to change in

geometry or material properties. To obtain these stress patterns, the rostrum was formu-

lated as a network flow model by utilizing the node and connectivity information from

the finite element simulation. The network was weighted based on the Von-Mises stresses

obtained from the output database file produced from the finite element experiments on
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the rostrum. The maximum-flow/minimum-cut algorithm described in [132] was used to

identify the stress flow patterns when the rostrum is subjected to a uniform pressure load.

A seamless, platform-independent interface was developed to formulate the rostrum as

network flow problem and compute the maximum-flow/minimum-cut of the network.

The flow network approach is used to validate the following research hypothesis stated

in Chapter 1:

Testable Hypothesis-1: The rostrum is resilient because of enhanced toughening mech-

anisms. The toughening mechanisms in the rostrum may be attributed to the complex ar-

rangement of lattice (fractal-like) skeletal structure. By using flow network approach, the

failure mechanisms in the rostrum’s complex geometry can be identified earlier when the

material is still in the linearly elastic regime.

4.1.1 Finite element simulations

Finite element simulations were carried out on the rostrum of the paddlefish using the

commercial software package Abaqus/Standard [123]. The simulations were performed on

ERDC’s High Performance Computing Modernization Program (HPCMP) Department of

Defense (DoD) Supercomputing Resource Center (DSRC) located in Vicksburg, MS. The

computational model was generated from the tomography (CT scan) of the paddlefish ros-

trum. Figure 3.14 through Figure 3.17 shows the outermost tissue, the inner hard cartilage,

the innermost soft cartilage, and a cross section showing the mesh assembly. The compo-

nent parts of the rostrum were individually imported into Abaqus. The parts were meshed

using a combination of hexahedral and tetrahedral elements. The model used in the current
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research comprises 119,712 hexahedral elements, 1,300,451 tetrahedral elements, 375,361

nodes, and 1,126,083 total degrees of freedom.

4.1.2 Material Properties

Nano-indentation experiments carried out on the rostrum revealed the material prop-

erties of the components of the rostrum [121]. Table 4.1 shows the three commercially

available materials selected to represent the rostrum components shown in Figure 3.14

through Figure 3.17. Details of the materials used in the analysis are included in Appendix

A.

Table 4.1

Commercial materials selected to model the components of rostrum.

Part Commercial material Elastic modulus
Tissue Vinyl ester Epoxy 2.9 GPa

Hard Cartilage Polyethylene Fibers 66 GPa
Soft Cartilage Polyethylene/Epoxy(as isotropic) 49,762 MPa

4.1.3 Force and displacement boundary conditions

A uniform pressure of 50 MPa was applied on the top surface of the rostrum displayed

in purple shading in Figure 4.1, Figure 4.2, and Figure 4.3. Three boundary conditions, i.e.,

fixed-plate, fixed-fixed, and cantilever beam, were selected to study of effects of boundary

conditions on the stress flow pattern in the rostrum. The fixed-plate boundary condition

was implemented on the rostrum by restraining the three components of displacement as
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seen in Figure 4.1. The fixed-fixed boundary condition was implemented by restraining the

displacement along two opposite edges of the rostrum as seen in Figure 4.2. The cantilever

beam boundary condition was implemented by restraining the displacement along one edge

of the rostrum as seen in Figure 4.3.

Figure 4.1

Fixed-plate boundary conditions implemented on the rostrum

4.1.4 Finite element experiment details

The Abaqus/Standard solver was used for conducting static analysis on the rostrum.

The choice of Abaqus/Standard for performing these analyses is justified based on the

algorithm that it employs for static and low-speed dynamic events wherein highly accurate

stress solutions are required. Gravity is applied in the negative y-direction. Geometric

non-linearity was taken into account in the simulations.
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Figure 4.2

Fixed-fixed boundary conditions implemented on the rostrum

Figure 4.3

Cantilever beam boundary conditions implemented on the rostrum
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4.1.5 Flow network analysis on the rostrum

Source and sink nodes were identified and provided as input to the maximum-flow/minimum-

cut algorithm. The source and sink nodes were identified at the edges and center of the

maximum displacement area on the top and bottom surfaces of the rostrum represented

by red coloring in Figure 4.4. For the fixed-plate and fixed-fixed boundary condition, the

same combinations of sources and sinks were used. For the cantilever beam boundary

condition, the high stress areas were selected on the top and bottom surfaces to represent

the source and sink nodes as shown in Figure 4.5. As verified earlier for the four-point

simply-supported beam, the flow network algorithm was executed multiple times using the

source-sink combination shown in Figure 4.4 and Figure 4.5 for each of the three boundary

conditions in the current study. The results for each boundary condition were superimposed

as the material was in the linearly elastic regime. Reversing the selection of source and sink

nodes from the top to the bottom surfaces does not change the results obtained using the

maximum-flow/minimum-cut algorithm. The network flow analysis indicates that the fail-

ure sites for the structural systems are located in the area where the minimum-cut is found

as verified earlier in Chapter 3 for three- and four- point bending of a simply-supported

concrete beam.

4.1.5.1 Flow network analysis of the soft cartilage of the rostrum

Figure 4.6(a) shows the maximum principal stresses on the bottom surface of the soft

cartilage of the rostrum for the fixed-plate boundary condition. Although the stresses pro-

gressively increase in the early stages of loading, they were evenly distributed across the
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Figure 4.4

Displacement contours of the rostrum subjected to uniform pressure loading with a
fixed-plate boundary condition showing the location of source/sink for fixed-plate and

fixed-fixed boundary condition
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Figure 4.5

Stress contours of the rostrum subjected to uniform pressure loading with a cantilever
beam boundary condition showing the location of source/sink
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entire bottom surface thereby providing no insight into the failure mechanism. In contrast,

Figure 4.6(b) displays the output obtained by executing the maximum-flow/minimum-cut

algorithm using the source/sink combination shown Figure 4.4 and superimposing the re-

sults as previously validated for the case of four-point bending of a concrete beam in

Section 3.4.2. Recall that the minimum-cut embodies a set of vertices that inhibits the

transmission of information, i.e., stresses in the current analysis. The minimum-cut on

the bottom surface of the soft cartilage occurs along the edges where there is a change in

geometry and material properties. Based on the previous analysis for four-point bending

of a simply-supported beam discussed in Section 3.4.2, which demonstrated that failure

initiated on the minimum-cut, it is anticipated that failure will occur along these edges.

The red regions at the tip and base of the bottom surface are also located in areas where

the material properties change. The maximum-flow/minimum-cut algorithm has detected

these candidate failure sites in the nascent stages of loading when the material is in the lin-

early elastic regime. The flow network approach reduced the computational cost and time

since the finite element analysis did not have to be run until the structural system failed.

Figure 4.7(a) shows the maximum principal stresses on the bottom surface of the soft

cartilage of the rostrum for the fixed-fixed boundary condition. Higher stresses are ob-

served at the tip and base of the soft cartilage due to the fixed-fixed boundary condition.

Figure 4.7(b) displays the output from maximum-flow/minimum-cut algorithm. The inter-

face between the red and blue regions represents the locations of the minimum-cut. It is

located at the tip, base, and along the edges where there is a change in material property as

observed for the fixed-plate boundary condition.
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Figure 4.6

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on bottom surface of rostrums soft cartilage. The
nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut (Fixed-plate boundary condition).
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Figure 4.7

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on bottom surface of rostrums soft cartilage. The
nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut (Fixed-fixed boundary condition).
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Figure 4.8(a) shows the maximum principal stresses on the bottom surface of the soft

cartilage of the rostrum for the cantilever beam boundary condition. Higher stresses are

observed at the tip of the bottom surface of the soft cartilage. This can be attributed to

the cantilever beam boundary condition. Also, the peak stress value in the finite element

analysis is lower for the cantilever beam boundary condition. This may be because the

rostrum in its natural installation is optimized for performance for this type of restraint. The

stresses progressively decrease from the base to the tip of the soft cartilage. Figure 4.8(b)

displays the output from maximum-flow/minimum-cut algorithm. The minimum-cut is

located at the tip, base, and along the edges in the regions where there is a change in

material property as observed for the fixed-plate and fixed-fixed boundary conditions.

Figure 4.9(a) shows the maximum principal stresses on the top surface of the soft car-

tilage of the rostrum for the fixed-plate boundary condition. As observed previously in

Figure 4.6(a), the finite element analysis shows the stresses progressively increase as the

external load increases as expected. Figure 4.9(b) shows the minimum-cut obtained by

running the maximum-flow/minimum-cut algorithm. The interface between the red and

blue nodes is the location of the minimum-cut. The failure for the top surface of the ros-

trum will initiate along these edges as indicated by the network flow analysis. As before,

there is a change in the material properties in these regions. Also, the red region at the base

of the top surface occurs in the areas where there is a contact between components with

different material properties. Hence, the flow network strategy has identified the regions

where the failure mechanisms are expected to initiate.
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Figure 4.8

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on bottom surface of rostrums soft cartilage. The
nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut (Cantilever beam boundary condition).
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Figure 4.9

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on top surface of rostrum’s soft cartilage. The nodes

are colored by their respective locations on the source (red) or sink (blue) side of the
minimum-cut (Fixed-plate boundary condition).
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Figure 4.10(a) shows the maximum principal stresses on the top surface of the soft

cartilage of the rostrum for the fixed-fixed boundary condition. A clear variation in the

stress values is observed in the center region of the top surface because of the fixed-fixed

boundary condition. Figure 4.10(b) shows the minimum-cut obtained by the maximum-

flow/minimum-cut algorithm. The interface between the red and blue nodes is the location

of the minimum-cut. The failure for the top surface of the rostrum will initiate along the

edges based on the network flow analysis. There is a change in the material properties in

this region. Also the red region at the base of the top surface occurs in the areas where

there is a contact between components with different material properties. Hence, the flow

network strategy has identified the local regions where the failure mechanisms are expected

to initiate. The stress pattern from the maximum-flow/minimum-cut is similar for the fixed-

plate and fixed-fixed bounday conditions.

Figure 4.11(a) shows the maximum principal stresses on the top surface of the soft car-

tilage of the rostrum for cantilever beam boundary condition. An even distribution of stress

is seen on the top surface of the rostrum’s soft cartilage for the cantilever beam boundary

condition. Figure 4.11(b) shows the minimum-cut obtained by running the maximum-

flow/minimum-cut algorithm. Based on the flow network analysis, failure on the top sur-

face of the soft cartilage will initiate along the edges where there is a change in the material

properties as observed for the fixed-plate and fixed-fixed boundary conditions earlier as in-

dicated by the flow network analysis. Also the red region at the base of the top surface

occurs in the areas where there is a contact between components with different material

properties. Hence, the flow network strategy has identified the local regions where the
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Figure 4.10

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on top surface of rostrum’s soft cartilage. The nodes

are colored by their respective locations on the source (red) or sink (blue) side of the
minimum-cut (Fixed-fixed boundary condition).
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failure mechanisms are expected to initiate. The stress flow pattern from the maximum-

flow/minimum-cut is relatively insensitive to the type of boundary condition - fixed-plate,

fixed-fixed, and cantilever. This suggests that the network flow analysis is capturing an

intrinsic characteristic of the structural system that is independent of the boundary condi-

tions.

4.1.5.2 Flow network analysis on the hard cartilage of the rostrum

Figure 4.12(a) shows the maximum principal stresses on the bottom surface of the hard

cartilage part of the rostrum for the fixed-plate boundary condition. The overall stresses

progressively increase with the increase in external loading as expected. Figure 4.12(b)

displays the minimum-cut obtained from the maximum-flow/minimum-cut algorithm. The

nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut. The failure sites are located in the interface between the red and blue

nodes. As seen in Figure 4.12(b), these regions are located in the center part of the hard

cartilage. Since the lattice of the hard cartilage is not a continuous pattern, failure will

not travel though the lattice region. The minimum-cut picks up a region in the lattice

where the stress concentration is high and the nodes are prone to failure. The center part

of Figure 4.12(b) clearly displays the strain localization, which is a typical mode of failure

of a structural system under tensile loading. Hence, the research strategy implemented in

the current work successfully identifies the failure mechanisms in the nascent stages of

loading.
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Figure 4.11

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on top surface of rostrum’s soft cartilage. The nodes

are colored by their respective locations on the source (red) or sink (blue) side of the
minimum-cut (Cantilever beam boundary condition).
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Figure 4.12

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on bottom surface of rostrum’s hard cartilage. The
nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut (Fixed-plate boundary condition).
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Figure 4.13(a) shows the maximum principal stresses on the bottom surface of the hard

cartilage part of the rostrum for fixed-fixed boundary condition. A clear variation in stress

is seen along the center bone of the hard cartilage. This may be the result of the fixed-fixed

boundary condition. On the other hand, the stress flow pattern obtained by the maximum-

flow/minimum-cut algorithm is visually similar to the one obtained with the fixed-plate

boundary condition. The minimum-cut is located in the regions where the center bone

attaches to the lattice structure and there is a variation in geometry of the structural system

as seen in Figure 4.13(b). Also, strain localization is clearly visible in the center region of

the hard cartilage very similar to that observed for the fixed-plate boundary condition.

Figure 4.14(a) shows the maximum principal stresses on the bottom surface of the

hard cartilage part of the rostrum for cantilever beam boundary condition. Higher stresses

are observed towards the base of the hard cartilage. This is the result of the cantilever

beam boundary condition. On the other hand, the pattern obtained by the maximum-

flow/minimum-cut algorithm is visually similar to the ones obtained with the fixed-plate

and fixed-fixed boundary conditions. The minimum-cut is located in the regions where the

center bone attaches to the lattice structure and there is a variation in geometry as seen

in Figure 4.14(b). Also, strain localization is clearly visible in the center region of the

hard cartilage very similar to that observed for the fixed-plate and fixed-fixed boundary

condition.

Figure 4.15(a) displays the maximum principal stresses on the top surface of the hard

cartilage of the rostrum for fixed-plate boundary condition. Although the finite element

analysis gives the overall distribution of stresses in the structural system, the underlying
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Figure 4.13

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on bottom surface of rostrum’s hard cartilage. The
nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut (Fixed-fixed boundary condition).
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Figure 4.14

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on bottom surface of rostrum’s hard cartilage. The
nodes are colored by their respective locations on the source (red) or sink (blue) side of

the minimum-cut (Cantilever beam boundary condition).
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details that govern the phenomena of failure mechanism are hard to determine from the

stresses before failure. Figure 4.15(b) on the contrary shows the minimum-cut obtained by

executing the maximum-flow/minimum-cut algorithm. The central part of Figure 4.15(b)

clearly highlights the crushing/buckling behavior that is typically seen in compressive fail-

ure. Also, a majority of the failure sites are located in the region where there is a change of

geometry and material properties. Again, the current methodology has identified the sites

of failure in the nascent stages of loading.

Figure 4.16(a) displays the maximum principal stresses on the top surface of the hard

cartilage of the rostrum for fixed-fixed boundary condition. The overall stresses progres-

sively increase with the increase in external load. Figure 4.16(b) shows the minimum-cut

obtained by the maximum-flow/minimum-cut algorithm. The central part of Figure 4.16(b)

clearly highlights the crushing/buckling behavior that is typically seen in compressive fail-

ure. Also, a majority of the failure sites in this case are located in the region where there is

a change of geometry and material properties.

Figure 4.17(a) displays the maximum principal stresses on the top surface of the hard

cartilage of the rostrum for the cantilever boundary condition. The overall stresses progres-

sively increase with the increase in external load as observed for the fixed-plate and fixed-

fixed boundary condition. Also, higher stresses are observed on the base of the hard carti-

lage due to the cantilever beam boundary condition. Figure 4.17(b) shows the minimum-

cut obtained by executing the maximum-flow/minimum-cut algorithm. The central part of

Figure 4.17(b) clearly highlights the crushing/buckling behavior that is typically seen in

compressive failure.
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Figure 4.15

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on top surface of rostrum’s hard cartilage. The nodes

are colored by their respective locations on the source (red) or sink (blue) side of the
minimum-cut (Fixed-plate boundary condition).
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Figure 4.16

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on top surface of rostrum’s hard cartilage. The nodes

are colored by their respective locations on the source (red) or sink (blue) side of the
minimum-cut (Fixed-fixed boundary condition).
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Figure 4.17

(a) Maximum principal stress obtained from finite element analysis (b) Minimum-cut
obtained from flow network analysis on top surface of rostrum’s hard cartilage. The nodes

are colored by their respective locations on the source (red) or sink (blue) side of the
minimum-cut (Cantilever beam boundary condition).
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4.1.5.3 Flow network analysis on tissue of the rostrum

Figure 4.18(a) shows the minimum-cut obtained from the flow network analysis on the

bottom surface of the rostrum using the source-sink combination shown Figure 4.4 for the

fixed-plate boundary condition. As seen in Figure 4.18 (a), the flow network captures the

failure patterns at much earlier stages of loading that are not evident in the finite element

results shown in Figure 4.18(b). At lower pressures, the strain localization patterns are

captured on the tip of the central region of Figure 4.18(a). As the pressure increases, strain

localization patterns are formed all along the central region of the tissue of the rostrum.

Truss-like patterns are captured as seen in Figure 4.18(a). In contrast, the maximum prin-

cipal stresses seen in Figure 4.18(b) do not show evidence of such patterns. The strain

localization patterns captured through the flow network strategy are typically observed in

a structural system under tensile loading. Also, at a pressure of 7.143 MPa, Figure 4.18(a)

does not show any failure sites at the base of the tissue part of the rostrum indicative of it

being stronger than the other components of the rostrum. This is the region that is attached

to the mouth of the paddlefish and this particular structural system is optimized for this

particular type of restraint. The flow network strategy captures this pattern in the nascent

stages of loading when the material is still in the linearly elastic regime.

Figure 4.19(a) shows the minimum-cut obtained from the flow network analysis on

the bottom surface of the rostrum using the source-sink combination shown Figure 4.4 for

the fixed-fixed boundary condition. As seen in Figure 4.19 (a), the flow network captures

the failure patterns at much earlier stages of loading that are not evident in the results

shown in Figure 4.19(b). At a pressure of 1.428 MPa, the flow network captures the strain
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Figure 4.18

(a) Network flow analysis on the bottom surface of rostrum subjected to uniform pressure
loading with a fixed-plate boundary condition. The nodes are colored by their respective

locations on the source (red) or sink (blue) side of the minimum-cut. (b) Maximum
principal stresses on the bottom surface of rostrum (Fixed-plate boundary condition).
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localization in the center region as well as patterns on the edges of the rostrum that may be

a result of the fixed-fixed boundary condition. As the pressure increases, truss like patterns

are again evident. Also, the base of the rostrum does not show any minimum-cuts towards

the right and left sides indicating that these are the strongest parts of the rostrum.

Figure 4.19

(a) Network flow analysis on the bottom surface of rostrum subjected to uniform pressure
loading with a fixed-plate boundary condition. The nodes are colored by their respective

locations on the source (red) or sink (blue) side of the minimum-cut. (b) Maximum
principal stresses on the bottom surface of rostrum (Fixed-fixed boundary condition).

Figure 4.20(a) shows the minimum-cut obtained from the flow network analysis on the

bottom surface of the rostrum using the source-sink combination shown in Figure 4.4 for

the cantilever beam boundary condition. As seen in Figure 4.20 (a), the flow network cap-

tures the anticipated failure patterns at much earlier stages of loading that are not evident in
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the computational mechanics results shown in Figure 4.20(b). The flow network displays

minimum-cuts towards the base region until the external loading pressure reaches 4.285

MPa. This behaviour may be attributed to the fact that rostrum is optimized in nature for a

cantilever beam boundary condition. As the pressure increases, truss-like patterns develop.

Also, the base of the rostrum does not show any minimum-cuts towards the right and left

sides indicating that these are the strongest parts of the rostrum.

Figure 4.20

(a) Network flow analysis on the bottom surface of rostrum subjected to uniform pressure
loading with a fixed-plate boundary condition. The nodes are colored by their respective

locations on the source (red) or sink (blue) side of the minimum-cut. (b) Maximum
principal stresses on the bottom surface of rostrum (Cantilever beam boundary condition).

Figure 4.21(a) displays the minimum-cut obtained using the flow network approach on

the top surface of the rostrum for the fixed-plate boundary condition. As seen in Figure 4.21
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(a), at lower stresses, the minimum-cut is clearly formed on the right and left sides of the

rostrum. These are the regions where the material properties of this component of the

rostrum change drastically. As the pressure increases, patterns are formed in the center

and base regions. Also, as the pressure increases in Figure 4.21(a), there is an absence of

failure sites at the left and right corners of the base region of the rostrum. This behavior

is similar to the one observed on the top surface of the rostrum and is indicative of the

identification of the stronger part of the rostrum during the nascent stages of loading.

Figure 4.22(a) displays the minimum-cut obtained using the flow network approach

on the top surface of the rostrum for the fixed-fixed boundary condition. As seen in Fig-

ure 4.22(a), at lower pressures, minimum-cuts are located at the edges of the rostrum that

do not have a displacement boundary condition. As the pressure increases, the patterns

observed from the flow network analysis for the fixed-fixed boundary condition are simi-

lar to the fixed-plate boundary condition. In contrast, Figure 4.22(b) shows the maximum

principal stresses from the finite element analysis. Although the tip of the rostrum shows

high pressure, the details captured by the flow network analysis in the nascent stages of

loading are missing. Hence, the proposed approach has identified the anticipated failure

patterns earlier than a finite element analysis.

Figure 4.23(a) displays the minimum-cut obtained using the flow network approach on

the top surface of the rostrum for the cantilever beam boundary condition. As seen in Fig-

ure 4.23(a), at lower pressures, the flow network identifies the minumum-cuts towards the

base of the rostrum. As the external pressure reaches 4.285 MPa, the minimum-cut grows

over the top surface. The minimum-cut shows identical patterns of buckling/crushing be-
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Figure 4.21

(a) Network flow analysis on the top surface of rostrum subjected to uniform pressure
loading with a fixed-plate boundary condition. The nodes are colored by their respective

locations on the source (red) or sink (blue) side of the minimum-cut. (b) Maximum
principal stresses on the bottom surface of rostrum (Fixed-plate boundary condition).
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Figure 4.22

(a) Network flow analysis on the top surface of rostrum subjected to uniform pressure
loading with a fixed-plate boundary condition. The nodes are colored by their respective

locations on the source (red) or sink (blue) side of the minimum-cut. (b) Maximum
principal stresses on the bottom surface of rostrum (Fixed-fixed boundary condition).
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haviour as seen for the fixed-plate and fixed-fixed boundary condition. The stresses ob-

tained from the finite element analysis show peak values in the center region towards the

base of the rostrum as seen in Figure 4.23(b), but the details of the anticipated failure

mechanisms captured by the flow network strategy are missing.

Figure 4.23

(a) Network flow analysis on the top surface of rostrum subjected to uniform pressure
loading with a fixed-plate boundary condition. The nodes are colored by their respective

locations on the source (red) or sink (blue) side of the minimum-cut. (b) Maximum
principal stresses on the bottom surface of rostrum (Cantilever beam boundary condition).

4.1.6 Performance of the software in parallel

The software developed for the current research keeps track of the coordinate in-

formation of the nodes when the results from the finite element analysis for the ros-
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trum are mapped to the abstract domain to facilitate formulation as a network flow prob-

lem. Computations are performed on the abstract, physics-free domain and the solution

is mapped back to the physical domain using the coordinate information associated with

the nodes. Since the finite element simulations produce large datasets, OpenMP is used

to parallelize the procedure developed to formulate the rostrum as a flow network prob-

lem. OpenMP (Open Multi-Processing) is an application programming interface (API)

that supports multi-platform shared memory multiprocessing programming in C, C++, and

FORTRAN [134] on most platforms including Solaris, AIX, HP-UX, Linux, macOS, and

Windows. OpenMP is a method of parallelizing in which a master thread forks out a spec-

ified number of slave threads and the system distributes the assigned tasks among them.

The performance of the software in parallel is presented in the following sub-sections.

4.1.6.1 Run time and speedup

The runtime of a serial program is the time taken for the program to execute on a

single processor. The parallel run time is defined as the time taken from the moment that

the parallel execution starts to the time that the last processor finishes its assigned task.

Figure 4.24 displays the runtime of the software in parallel. The input size is held constant

as the number of threads is increased. As seen from Figure 4.24, the software shows a

performance improvement until 10 threads are used. As the number of threads increases

beyond 10, no performance gain is observed. Therefore, the optimal number of threads for

processing the dataset analyzed in this instance is 10.
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Figure 4.24

Runtime versus number of threads of the software implemented on rostrum

An alternative performance metric is speedup. Speedup establishes the advantage of

solving a given problem using parallel computing and is defined as the ratio of the time

taken to run a problem using a single processor to the time taken to solve the same problem

using parallel computing [135]. Figure 4.25 shows the speedup as a function of number of

threads. As seen in Figure 4.25, speedup is 1 for sequential implementation and steadily

increases until 10 threads are used. Using threads greater than 10 will not produce any

performance gain for the current problem. In fact, the speedup steadily decreases with

increasing the threads after the number beyond 10. As before, the problem size is held

steady as the number of threads is increased.

4.2 Performance analysis of the bio-inspired structural systems

Lightweight structures are in high demand in many application areas because they de-

liver an optimum use of available resources. However, lightweight structures are required
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Figure 4.25

Speedup versus number of threads of the software implemented on rostrum

to have acceptable strength for safe usage. This section validates the testable hypothesis

presented below by analyzing the performance of five proof-of-concept structural systems

based on the rostrum (snout) of the paddlefish. The performance of each model was quanti-

fied in terms of deformations and maximum principal stresses experienced under a constant

uniform pressure using a fixed-plate boundary condition.

Testable Hypothesis-2: If the failure mechanisms of the resilient lattice bio-structural

systems are dependent on the geometrical arrangements, then structures with more com-

plex geometries will have more resilience than structures with lower complexity.

This hypothesis was tested by conducting computational mechanics experiments on

conceptual prototypes of bioinspired, energy-dissipative mechanical system models in-

spired from the rostrum of paddlefish with several lattice patterns.
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4.2.1 Bio-inspired model composition

The hypothesis of this research is that the rostrum′s superior performance is a func-

tion of its complex lattice architecture and heterogeneous material properties; therefore,

the model structures should likewise incorporate lattice architecture and heterogeneous

material properties. Five notional representations of bio-inspired structural systems were

investigated. Figure 4.26 shows the five lattice patterns (square box, cross box, open box,

solid plate, and crisscross box) developed to obtain understanding of the role played by the

complexity of the lattice architecture on the resilience of the structural systems. The mod-

els were built using Abaqus CAE. Figure 4.27 shows the components of the rostrum and

the bio-inspired models. The dimensions of the notional structural systems were similar

to those of the rostrum as shown in Figure 4.28. The materials in Table 4.1 were used for

these models. Table 4.2 displays the details of the computational mesh of the five models.

Details of the analysis follow in the subsequent sections.

Table 4.2

Mesh details of the bio-inspired models used in finite element analysis

Model Nodes Elements Hexahedral Tetrahedral Wedge
elements elements elements

Open box 228984 213180 213180 0 0
Square box 877532 208152 208152 0 0
Cross box 998739 714264 141552 572712 0

Crisscross box 841152 626809 182683 443966 160
Solid plate 445508 104667 104667 0 0
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Figure 4.26

(a) Indeterminate lattice architecture of the rostrum. (b) A representative composite
structure developed for this study with the different lattice architecture shown (c) square

box, (d) cross box, (e) open box, (f) solid plate, and (g) crisscross box pattern.
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Figure 4.27

Top row (a) tissue, (b) hard cartilage, and (c) soft cartilage of the rostrum, bottom row
represents the components of the bio-inspired models
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Figure 4.28

Dimensions of the bio-inspired structural systems

4.2.2 Force and displacement boundary conditions

Figure 4.29 displays the uniform pressure loading (50 MPa) applied to the upper surface

of the models. A fixed-plate boundary condition is applied by restraining the displacements

along the edges as shown in Figure 4.29.

4.2.3 Finite element experiment details

A general static analysis is conducted on the bio-inspired models using Abaqus/Standard

[123]. The uniform pressure load is incrementally applied after the initialization starting at

zero and increasing linearly to the maximum specified magnitude. Geometric non-linearity

was taken into account. Owing to the complexity of the geometry coupled with the non-
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Figure 4.29

Uniform pressure loading on bio-inspired models with fixed-plate boundary condition

linear analysis, each simulation was executed on ERDC’s High Performance Computing

facilities located in Vicksburg, MS.

4.2.4 Contours of stress and deformation

Contours of stress and deformation are plotted to identify the areas of interest in the

model. Figure 4.30(a) shows the maximum principal stresses and Figure 4.30(b) shows the

deformations experienced by the crisscross patterned structural system (Figure 4.26(g)).

The horizontal axis selected for further analysis passes through the center region (maxi-

mum deformation is observed in the center region) as well as the lattice structures of the

models. The axis is selected in this manner to provide insight on the effects of the lattice
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pattern on the structural response. For the sake of consistency, the same horizontal axis is

used for each model investigated in the current study.

4.2.5 Deformation versus distance along the horizontal axis of the bio-inspired mod-
els

Figure 4.32 shows the deformation experienced by the five models as a function of true

distance along the horizontal axis of the models displayed in Figure 4.30. As seen in Fig-

ure 4.32, the structure with the open box lattice (Figure 4.26(e)) pattern experiences the

largest deformation. The cross box and square box experience a similar trend in displace-

ment along the region of x=5 mm to x=15 mm. Around the center region, the model with

the square box pattern experiences slightly higher deformation as compared to the model

with the cross box pattern. In the region x=60 mm to x= 75 mm, the models with the square

box and cross box patterns display a similar trend. The model with the crisscross box pat-

tern experiences lower displacements as compared to the models with the open box, cross

box, and square box patterns. As anticipated, the solid plate model experiences the least

deformation out of the five models evaluated in the current study. Using the solid plate as

the reference, the open box model shows an increase of approximately 35% in deformation,

the square box model shows an increase of approximately 23% in deformation, the cross

box model shows an increase of approximately 18% in deformation, and the crisscross box

model shows an increase of approximately 13% in deformation. Table 4.4 summarizes

these observations. Increasing the complexity of the lattice pattern significantly decreases

the deformation experienced by the center region of the bio-inspired models as seen in

Figure 4.32; however, increasing the complexity of the structure also increases its weight.

108



www.manaraa.com

Figure 4.30

(a) Maximum principal stress (MPa) (b) Magnitude of displacement (mm)
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The performance of the five bio-inspired models is analyzed in terms of maximum

deformation and mass. Table 4.3 displays the maximum deformation and mass of the

five models. The mass of the models includes the mass of the lattice structure and the

mass of the central region. Figure 4.31 shows the decrease in deformation and increase

in mass as the geometrical complexity of the models increases. The percentage decrease

in deformation and percentage increase in mass with increasing geometrical complexity is

shown in Table 4.4.

Table 4.3

Maximum deformation and mass of the bio-inspired models.

Lattice Pattern Maximum deformation (mm) Mass (Metric Tons)
Open box 1.51600 0.183331

Square box 1.38369 0.204356
Cross box 1.36397 0.212019

Crisscross box 1.29972 0.227944
Solid plate 1.26624 0.255615

4.2.6 Maximum principal stress versus distance along the horizontal axis of the bio-
inspired models

Figure 4.33 displays the maximum principal stress for the five structural systems in the

current study. In the center region, i.e., x=30 mm to x=45 mm, the five structural systems

display a similar stress trend. However, at x=5 mm and x=69 mm, the square box pattern

experiences higher stress as compared to all other models in the study. The open box

pattern shows the second highest stresses at these locations. The models with the cross
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Figure 4.31

Deformation and mass of bio-inspired models.

Table 4.4

Percentage decrease in deformation and percentage increase in mass with increasing
geometrical complexity.

Increasing geometrical Percentage decrease Percentage increase
complexity in deformation in mass

Open box to square box 8.727573 11.4683
Square box to cross box 1.425175 3.74983

Cross box to crisscross box 4.710514 7.51112
Crisscross box to solid plate 2.575939 12.1394
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Figure 4.32

Deformation as a function of distance along the horizontal axis of bio-inspired models
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box, the crisscross box, and solid plate patterns show similar trends at these locations. The

model with the solid plate pattern displays stress peaks at x=25 mm and at x=50 mm that

do not appear in the other models at those locations. The lattice acts as a load bearing

member thereby providing stability to the center region. The stress in the center region is

independent of the complexity of the lattice pattern for the fixed-plate boundary condition

coupled with a uniformly distributed load.

4.2.7 Stress contours of the bio-inspired models

Figure 4.34 shows the maximum principal stress experienced by the lattices of the

five bio-inspired models investigated in the current study. Stress peaks are seen in the

region where the lattice pattern is attached to the center region for all of the models, i.e., a

change in geometry. As seen in Figure 4.34 (d), the crisscross lattice structure shows the

lowest peak stress value of 6.290e+02 MPa. Increasing the complexity of the lattice pattern

resulted in a decrease in the peak stress as seen in Figure 4.34. Also, the crisscross box

lattice pattern shows fewer stress peaks as compared to the four other patterns in the current

study. This is because of the quad directional stability provided by this lattice pattern. The

diagonal elements in the crisscross box lattice pattern reduce the stress without adding

significant mass.

While the results in terms of deformations shown in Figure 4.32 are inconclusive, the

stress results demonstrate that there is a significant decrease in stress for only a minimal

increase in area. The addition of diagonal elements decrease the maximum stress by almost

50 %. Hence, as seen in Figure 4.34, the crisscross box pattern provides fewer stress
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Figure 4.33

Maximum principal stress as a function of distance along the horizontal axis of
bio-inspired models
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peaks because of the quad directional stability provided by its members. Fewer stress peak

implies greater resiliency. This proves the hypothesis – that increasing the geometrical

complexity results in greater resiliency – true.

4.3 Application of scaling laws to bio-inspired structural systems

One of five bio-inspired structural systems described in Section 4.2.1 was selected

for applying the scaling laws developed for a blast load in Appendix A. In the current

study, similitude is used to scale the results from a small-scale computational prototype

to a larger-scale model. The procedure to develop a set of scaling parameters using the

Buckingham Pi theorem is explained in detail in Appendix A.

As illustrated in Appendix A, the Buckingham Pi theorem can be used to derive a set

of non-dimensional Pi terms for a structure subjected to a blast load. The deformation d

experienced by a structure impacted by blast loading is dependent on the linear dimension

L, stress or pressure σ, density ρ, energy e, velocity v, mass m, force f , and time t. The

number of parameters n = 9, the number of fundamental dimensions k = 3. Hence, there

will be (n − k) = 6 non-dimensional pi terms. (L, σ, v) are picked as repeating variables

that will be used to non-dimensionalize the others. Based on the procedure discussed in

Appendix A, the non-dimensional Pi terms are as follows:

d

L
= f(

σ

ρv2
,

e

ρv2L3
,
m

L3ρ
,

f

L2v2ρ
,
tv

L
) (4.1)

Assuming that the strain rate is constant, Table 4.5 shows how to scale selected variables

using the repeating variables (L, σ, v) listed above.
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Figure 4.34

Maximum principal stress for the bio-inspired models. (a) open box, (b) square box, (c)
cross box, (d) crisscross box, and (e)solid plate
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Table 4.5

Relationship between the model and prototype for the variables used for blast load.

Parameters Scale Factor Scale =1 Scale=2 Scale=4
Length (L) α 1 2 4
Mass (M) α3 1 8 64
Stress (α) 1 1 1 1
Time (t) α 1 2 4

Velocity (V) 1 1 1 1
Displacement (U) α 1 2 4

Strain (ε) 1 1 1 1
Acceleration (A) 1

α
1 0.5 0.25

4.3.1 Model details

The bio-inspired model with a square box lattice pattern was selected for application

of the scaling laws. The three component parts of the model are shown in Figure 4.35.

The model comprises of 223,212 nodes, and 208,152 linear hexahedral elements. The

dimensions of the model are shown in Figure 4.36. The Abaqus/Explicit solver was used

to conduct the dynamic analysis. The point charge was placed 1000 mm away from the

center region. Numerical experiments were carried to study the effect of blast loadings

on the model. In the two cases considered, the model was scaled two and four times

its initial size. The components of the bio-inspired model are represented by the same

commercial materials selected for the rostrum. The details of the materials are provided

in Section 4.1.2. Table 4.6 shows the details of the trinitrotoluene (TNT) weights and

time durations of the numerical experiments performed in the current study. Displacement

boundary conditions on the edges of the model are fixed for all degrees of motion. Fixed
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boundary conditions were chosen for the edges to hold the model in a stationary position

when it is under the influence of the blast load.

Table 4.6

Numerical experiment details (square box).

Scale Length of Weight of Time duration Distance between
model (mm) TNT (kg) (Sec) model and TNT (mm)

1 275 0.02 0.025 1000
2 550 0.16 0.05 2000
4 1100 1.28 0.1 4000

4.3.2 Displacement contours of the bio-inspired structural system

Figure 4.37 shows the non-dimensionalized deformation for the model and the pro-

totype of the bio-inspired model with the square box lattice pattern. Using the Pi terms

from equation 4.1, the non-dimensional deformation is plotted. As seen from Figure 4.37,

the non-dimensional deformation shows identical trends for the prototype and the scaled

model. Since the model has a fixed-plate boundary condition around all of the edges, the

center of the model experiences maximum deformation as expected. Figure 4.38 shows

the non-dimensional deformation on the top surface of the hard cartilage component of

the bio-inspired model. As expected, the maximum deformation is observed at the cen-

ter of the mode, which is consistent with the location of the charge. The deformation

steadily decreases near the edges of the hard cartilage. An identical deformation trend is

seen for the prototype and the scaled models. Thus, the numerical simulation has achieved
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Figure 4.35

Bio-inspired model details (Square Box) (a) outermost tissue, (b) inner hard cartilage, and
(c) innermost soft cartilage.

Figure 4.36

Dimension of the bio-inspired model (square box).
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the expected values as reflected by the Buckingham Pi theorem. This shows that correct

parameters were selected for the non-dimensional Pi terms.

4.3.3 Maximum principal stress contours of the bio-inspired structural system

Based on the similitude relations used for the current analysis, the stress should be the

same for the scaled models. Figure 4.39 displays the maximum principal stress on the top

surface of the bio-inspired prototype and the models.

Identical values of stresses are seen for the scaled models as seen in Figure 4.39. In

each case, the stresses are higher at the center of the top surface and gradually diffuse

throughout the surface. Figure 4.40 displays the stresses on the top surface of the hard

cartilage of the bio-inspired prototype and scaled models. Stresses show a peak value in

the region when the geometry of the system is changing, i.e., where the lattice structure is

attached to the center region. This behaviour is observed in the prototype and the scaled

models. The stress pattern, as well as the values follow, the laws of similitude for the

prototype and the both scaled cases. This proves that correct parameters were selected for

the derivation of the non-dimensional Pi terms for this problem.

4.4 Summary

The results of the proposed transdisciplinary research approach are now summarized:

1. This work has successfully identified stress flow patterns in a large, complex dataset
generated from high performance computational mechanics experiments of bio-structure.
The transdisciplinary approach used in the current work reduces the computational
time, and cost, and increases the efficiency of the design-test-biuld cycle for rapid
prototyping of novel bio-inspired structures.

2. This work has successfully formulated a complex bio-structure as a network flow
problem to identify the stress flow patterns in the nascent stages of loading when
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Figure 4.37

Non-dimensional deformation contours on top surface of bio-inspired model (square
box). (a) prototype, (b) model scale factor = 2, (c) model scale factor = 4.
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Figure 4.38

Non-dimensional deformation contours of hard cartilage bio-inspired model (square
box).(a) prototype, (b) model scale factor = 2, (c) model scale factor = 4.
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Figure 4.39

Stress contours of tissue part of bio-inspired model (square box). (a) prototype, (b) model
scale factor = 2, (c) model scale factor = 4.
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Figure 4.40

Stress contours of hard cartilage bio-inspired model (square box). (a) prototype, (b)
model scale factor = 2, (c) model scale factor = 4.
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the material is still in the linearly elastic region of the stress-strain curve. The flow
network approach reduces the size of the problem since we are concentrating on the
parameter of interest, i.e., stress. Also, since the stress flow patterns are captured in
the linearly elastic regime, a full non-linear finite element analysis is not required.
This will reduce the cost and computational time required for the analysis.

3. The flow network strategy was able to identify strain localization in the tensile re-
gions, and crushing behavior in the compressive regions of the rostrum. Additionally,
the flow network approach identified the failure sites to be at the locations where the
material properties and geometry of components of the rostrum changes , i.e., at the
interface regions. Also, the network flow approach captured the intrinsic structural
response to an external load. The new flow network methodology is not sensitive to
boundary conditions.

4. The source and sink nodes were identified from the stress and deformation contours
obtained from the computational mechanics experiments on the rostrum. However,
the flow network analysis is not sensitive to the locations selected for these special
nodes.

5. Five proof-of-concept, bio-inspired, energy dississipative structural systems with
varying lattice patterns were developed to validate one of the research hypothesis.
The maximum principal stress versus distance plots show that, the maximum prin-
cipal stress decreases by almost 50 % by adding the diagonal element. The stress
contours of the five bio-inspired models show that the crisscross box pattern pro-
vides fewer as well as lower stress peaks because of quad directional stability in
the members. This proves the hypothesis - that increasing the geometrical complex-
ity results in greater resiliency - true. The lattice architecture and the combination
of three materials provides structural stability to the center region producing a low
value for the maximum principal stress in the center region.

6. Deformation caused by blast impact on a bio-inspired model was represented in
terms of dimensionless Pi terms by application of the Buckingham Pi theorem. Nu-
merical experiments were carried out on the bio-inspired model to demonstrate the
application of similitude laws for blast loading. The deformation and stress contours
for the prototype and scaled models display that correct parameters were selected.
These parameters can be used to scale the prototype to full scale model dimensions.
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CHAPTER V

CONCLUSION

Biostructures in general exhibit superior characteristics because they have evolved to

serve multiple and specific functions. This research seeks to identify and understand the

phenomena of failure mechanisms in a complex bio-structure, i.e., the rostrum of the pad-

dlefish. The novel transdisciplinary approach presented in this study is a means to identify

the stress flow patterns in the nascent stages of loading through efficient application of the

maximum-flow/minimum-cut algorithm. The novel approach presented in this study lays

the foundation for understanding the influence of local topology on the global structural

response.

5.1 Stress distribution patterns in the rostrum

In this study, the maximum flow optimization problem and the maximum-flow/minimum-

cut pathways for a general flow network that was formulated from the node and connectiv-

ity information of the rostrum under a uniform pressure loading and blast loading condition

were considered. The objective was to examine the stress distribution in the flow network

that was weighted based on the stresses experienced by the structural system. The lat-

tice of the rostrum is an indeterminate, non-linear structure with varying material types,

and material properties, with non-uniform stiffness and irregularly-shaped members. The
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maximum-flow /minimum-cut approach facilitated in the analysis of the indeterminate lat-

tice architecture. The flow network approach developed in the current study was verified

using two classical problems. The flow network approach was able to identify failure for

the problem involving three-point bending of a simply-supported concrete beam. The de-

veloped approach was able to identify the shear and flexure patterns for four-point bending

of a simply-supported concrete beam. The shear and flexure patterns indentified by the

flow network approach govern the failure mechanism in this classical problem. Failure

patterns were identified at the onset of loading when the material was still in the linearly

elastic regime. By using the flow network strategy, the size of the problem is reduced since

we are concentrating on a parameter of interest, i.e., stress in the current study. Also, since

failure patterns are identified in the linearly elastic regime, the finite element element anal-

ysis does not have to be run until the structure fails thereby reducing the computational

cost and the use of damage models in the analysis.

When applied to the model of the rostrum, the flow network strategy was able to iden-

tify strain localization in the tensile regions, and crushing behavior in the compressive

regions of the rostrum. Additionally, the flow network approach identified the failure sites

as the locations where the material properties, as well as the geometry, of component parts

of the rostrum change, i.e., at the interfaces between different components of the rostrum.

The guidance regarding the selection of the source and sink nodes was obtained from the

stress and deformation contours obtained from the computational mechanics experiments.

However, it was also demonstrated that the results were not sensitive to the location of

the source and sink nodes, provided those locations are ”sensible.” Also, the flow network
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analysis was not sensitive to the boundary conditions. The flow network approach captured

the instrinsic response of the structural system to an external loading condition.

5.2 Runtime and speedup of the methodology used in the current research

This study has demonstrated novel software developed to process large datasets pro-

duced by high performance computational mechanics experiments on complex biostruc-

tures. The software developed for the current research was implemented on the rostrum of

a paddlefish subjected to a uniform loading. The model for the computational mechanics

experiments was developed in a Windows environment because of restrictions imposed by

the finite element software. Owing to the complexity of the biostructure, the computational

mechanics experiments were performed in parallel on a Linux cluster. The software devel-

oped for analyzing the stress distribution pattern is sufficiently robust to handle any struc-

tural system comprising variable constituent parts, parallelized to handle large datasets,

and platform independent to deal with datasets generated across multiple platforms.

5.3 Performance analysis of bio-inspired structural systems

This work has developed five proof-of-concept, bio-inspired energy dissipative system

with varying lattice patterns. The lattice architecture and the heterogenous materials pro-

vide structural stability to the center region. Five different bio-inspired models of different

complexity were considered: square box, cross box, open box, solid plate, and crisscross

box. Although the deflection versus distance plots are inconclusive, the maximum prin-

cipal stress versus distance plots show that, the maximum principal stress decreases by

almost 50 % by increasing the complexity of the structure by adding a diagonal element.
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The stress contours show that the crisscross box pattern provides fewer and lower stress

peaks because of the added quad directional stability in the members. This proves the

hypothesis- that increasing the geometrical complexity results in greater resiliency-true.

5.4 Dimensional analysis of structural response of complex biostructure

This research has successfully conducted a series of numerical experiments on the

rostrum of a paddlefish to apply similitude laws to predict the performance of complex,

full-scale structural components subjected to blast loads. Similitude can be used to draw

formal similarity in the behavior of models at different scales. The current research has

demonstrated that structural deformation caused by blast can be represented in terms of

dimensionless Pi terms by application of the Buckingham Pi theorem. This study has pre-

sented the development of similitude relationship for a simple system where the solution

is known to verify the application of a similitude-based approach. Numerical experiments

were carried out on the rostrum the of paddlefish to demonstrate the development and

application of similitude laws for blast loading for complex structural models. From the

analysis presented, it is evident that deformation, stress, velocity, and strains have been

successfully scaled within a reasonably acceptable error range. This confirms that the cor-

rect parameters were selected for non-dimensionalization.

5.5 Future work

Based on the findings of the current study, the following recommendations are sug-

gested for future work:

1. The flow patterns captured in nascent stages of loading were presented for three
different boundary conditions. In these simulations, the material was still in the
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linearly elastic regime. Future work will involve defining the magnitude of the load
at which the failure mechanisms identified by network theory will occur, which will
require the use of damage models as well as significantly longer run times for the
finite element analysis.

2. The flow network approach used in the present work was verified using classical
problems of three- and four-point bending of a simply-supported concrete beam.
Future work will involve verification with physical experiments conducted on the
rostrum.

3. The similitude laws derived in this research will be used to scale the geometrical and
material properties of the 3D printed bio-inspired models. Physical experiments will
be conducted for smaller scale models. These models will be scaled based on the
material-geometry combination to full-scale structural systems.
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APPENDIX A

DEVELOPMENT AND APPLICATION OF SIMILITUDE LAWS
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The solution for a typical engineering problems is obtained through the application of

analytical, computational and experimental methodologies. In many cases, due to cost or

size constraints, it is not possible to test the full-scale article. Similitude is used in this sce-

nario wherein the observations made in the laboratory can be used to estimate the behavior

of a real-world system by establishing a relationship between the results of the scaled ex-

periment and those observed in the real-world application. This section demonstrates the

development and application of similitude laws for complex structural models subjected to

blast loads.

Generally, similitude has been used to scale the parameters from a larger scale pro-

totype to a smaller scale model. In the current study, similitude is used to scale results

obtained from the small-scale computational prototype to a larger-scale model. The com-

putational prototype in the current research is the rostrum of the paddlefish. In preliminary

computational experiments, the rostrum exhibited better energy dissipation and load bear-

ing capacity when compared to a homogenous material with a similar geometry. Accord-

ingly, this section shows the procedure to develop a set of scaling parameters to scale the

computational prototype to a larger size and to verify the similitude laws.

A.1 Example: Buckingham Pi theorem for uniform load on a fixed plate

As an example of application of the Buckingham Pi theorem, consider a rectangular

plate with all edges fixed (as shown in Figure A.1) with a uniformly distributed load w

over the entire plate. This case is chosen for analytic validation of similitude because of

the resemblance of its boundary conditions to the boundary conditions used in the blast
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analysis. The critical load Pcr of the plate is dependent on the distributed load w on the

plate, Young’s modulus E, the cross sectional moment of inertia I , the vertical deflection

u, and the length of the beam l. Pcr can be written for this case as follows:

Pcr = g(w,E, I, u, l) (A.1)

Application of the Buckingham Pi theorem to a general problem can be described

as follows. Consider a dimensional quantity F that represents a physical phenomenon

and suppose that the dimensional quantities or factors influencing this phenomenon are

δ1, δ2, δ3, ...δn. The relation between F and the dimensional parameters δ1, δ2, δ3, ...δn is

given by the following equation:

F = g(δ1, δ2, δ3, ...δn) (A.2)

In Equation A.2, F is the dependent variable and δn(n = 1, 2, 3, ...n) are the inde-

pendent variables. Equation A.2 can be non-dimensionalized and expressed as shown in

Equation A.3:

π1 = f(π2, π3, π4, ...πn−k) (A.3)

where π2, π3, π4, ...πn−k are the dimensionless products of n physical parameters and k is

the number of fundamental dimensions (Force, Length, Time) or (Mass, Length, Time)

involved in the physical phenomenon.
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Figure A.1

Uniformly loaded plate with all edges fixed
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The similitude requirement stipulates that the π terms π2, π3, π4, ...πn−k must be equal

for the model and the prototype if the functional relationship, (i.e., (π1)m = (π1)p ), is to

be satisfied.

In this example, the number of physical variables, n = 6, and the number of dimen-

sions, k = 2. Therefore, there are n-k = 4 pi groups. The independent quantities namely

Pcr, w, E, I, b, t, and u need to be represented in terms of non-dimensional pi products as

indicated by Equation A.3 . The repeating variables are selected in such a way that all the

relevant dimensions are represented within them. For this example (E, l) are selected as

repeating variables that will be used to non-dimensionalize the remaining quantities.

Pcr = g(w,E, I, u, l) (A.4)

π1 = PcrE
alb

π1 = F ( F
L2

a
)Lb

a = 1; b = −2

π1 =
Pcr
EL2

(A.5)

π2 = WEalb

π2 = F
L2 ( F

L2 )
a
Lb

a = −1; b = 0

π2 =
W

E
(A.6)
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π3 = IEalb

π3 = L4( F
L2 )

a
Lb

a = 0; b = −4

π3 =
I

l4
(A.7)

π4 = uEalb

π4 = L( F
L2 )

a
Lb

a = 0; b = −1

π4 =
u

l
(A.8)

The pi products represented by Equations A.5 through A.8 are dimensionless. Based

on this analysis, the prediction equation given by Equation A.3 is:

π1 = f(π2, π3, π4) (A.9)

Hence,

Pcr
El2

= f(
W

E
,
I

l4
,
u

l
) (A.10)

The quantities affecting the physical phenomenon under study are represented in Equa-

tion A.10 in terms of the dimensionless pi products. The functional relationship will be
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satisfied, (i.e., (π1)model = (π1)prototype), if the three non-dimensional parameters π2, π3, π4

are equal for the model and the prototype.

Equation A.10 is a generalized equation and can be used to represent any system

that is described by the same quantities. Consider the dimensionless term (π3)model =

(π3)prototype.

Therefore,

Im
lm

= Ip
lp

Im = Ip(
l4m
l4p

)

where, S = Lm

Lp

Now, consider the dimensionless term (π1)model = (π1)prototype

Wm

Em
= Wp

Ep

Wm = Wp(
Em

Ep
)

Wm = Wp ∗ SE

where, SE = Em

Ep

Using the repeating variables E and l listed above, Table A.1 shows how selected vari-

ables are non-dimensionalized.

A.2 Buckingham Pi theorem for blast loading

Analysis using scaling laws can aid in determining the behavior of a structure from the

response of a similar model that is scaled geometrically by a parameter α. Carrying out ex-

periments on the full-scale model can be expensive and often dangerous if the experiments

involve explosives. For example, to analyze the deformation of a wall under blast load, the
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Table A.1

Similitude relations

Physical Parameters Scale Factor
Length S
Area S2

Volume S3

Linear Displacement S
Moment of Inertia S4

Point Load SES
2

Line Load SES
Uniformly Distributed Surface Load SE

Stress SE

tests carried out on the full-scale article will be very expensive and complex. Hence, in

such cases, experiments are done on a smaller-scale model and the results are interpreted

based on a set of scaling laws that relate the model to the prototype.

The following section will illustrate the use of the Buckingham Pi theorem to derive a

set of non- dimensionalized Pi terms for a structure subjected to a blast load. The defor-

mation d experienced by a structure impacted by blast loading is dependent on the linear

dimension L, stress or pressure σ, density ρ, energy e, velocity v, mass m, force F , and

time t. The number of parameters n = 9, the number of fundamental dimensions k = 3.

Hence, there will be (n − k) = 6 non-dimensional pi terms. For this case, Equation A.2

can be written in the following form

d = g(L, σ, ρ, e, v,m, F, t). (A.11)
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(L, σ, v) are picked as repeating variables that will be used to non-dimensionalize the oth-

ers.

π1 = dLaρbvc

π1 = LLa(FT
2

L−4 )
a
( L
T−1 )

c

a = −1; b = 0; c = 0

π1 =
d

L
(A.12)

π2 = σLaρbvc

π2 = ( F
L2 )La(FT

2

L−4 )
b
( L
T−1 )

c

a = 0; b = −1; c = −2

π2 =
σ

ρv2
(A.13)

π3 = eLaρbvc

π3 = FLLa(FT
2

L−4 )
b
( L
T−1 )

c

a = −3; b = −1; c = −2

π3 =
e

ρv2L3
(A.14)

π4 = mLaρbvc

π4 = FT 2L−1La(FT
2

L−4 )
b
( L
T−1 )

c

a = −3; b = −1; c = 0
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π4 =
m

L3ρ
(A.15)

π5 = fLaρbvc

π5 = FLa(FT
2

L−4 )
b
( L
T−1 )

c

a = −2; b = −1; c = −2

π4 =
f

L2v2ρ
(A.16)

π6 = tLaρbvc

π6 = TLa(FT
2

L−4 )
b
( L
T−1 )

c

a = −1; b = 0; c = 1

π6 =
tv

L
(A.17)

The pi products displayed by Equations A.13 through A.17 are dimensionless. Based

on this, the prediction equation given by Equation A.3 will result in the following equation:

π1 = f(π2, π3, π4, π5, π6). (A.18)

Hence,

d

L
= f(

σ

ρv2
,

e

ρv2L3
,
m

L3ρ
,

f

L2v2ρ
,
tv

L
). (A.19)
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Assuming that the strain rate is constant Table A.2 shows how to scale selected variables

using the repeating variables (L, σ, v) listed above.

Table A.2

Relationship between the model and prototype for the variables used in the current
analysis.

Parameters Scale Factor Scale =1 Scale=2 Scale=4
Length (L) α 1 2 4
Mass (M) α3 1 8 64
Stress (α) 1 1 1 1
Time (t) α 1 2 4

Velocity (V) 1 1 1 1
Displacement (U) α 1 2 4

Strain (ε) 1 1 1 1
Acceleration (A) 1

α
1 0.5 0.25

A.3 Analytic verification of similitude relation

Consider a rectangular plate, with all edges fixed as shown in Figure A.1, loaded by a

uniformly distributed w over the entire plate. The length of the plate L is 216 in, Young’s

Modulus E is 435.11e06psi, width b is 36in, and thickness t is 6 in subjected to a uniform

load w of 10lbs. Table A.3 shows the effect of scaling on parameters such as weight,

maximum displacement, and maximum stress. The values of the constants α, β1 can be

obtained from Table 11.4 in Roark’s formulas for stress and strain [136].
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Table A.3

Analytical verification of similitude relation

Scale Weight Maximum displacement Maximum stress
ρLbt Umax = αwb4

Et3
σmax = −β1wb2

t2

S=1 ρ ∗ (216 ∗ 36 ∗ 6) = ρ ∗ 46656 ρw
E
∗ 7776 −β1w ∗ 36

S=2 ρ ∗ (432 ∗ 72 ∗ 12) = ρ ∗ 186624 ρw
E
∗ 7776 ∗ 2 −β1w ∗ 36

= ρ ∗ 46656 ∗ S3 = ρw
E
∗ 7776 ∗ S

S=4 ρ ∗ (864 ∗ 144 ∗ 24) = ρ ∗ 2985984 ρw
E
∗ 7776 ∗ 4 −β1w ∗ 36

= ρ ∗ 46656 ∗ S3 = ρw
E
∗ 7776 ∗ S

A.4 Numerical validation of similitude relation

The developed scaling laws are applied to a complex biological model. In the current

research, the commercial software package AbaqusTM [123] is used to perform computa-

tional mechanics experiments on the biological model of interest. The description of the

model and analysis details follows in the subsequent sections.

A.4.1 Model description

The bio-structure of interest in the current study is rostrum of the paddlefish. An ear-

lier feasibility study conducted on the rostrum led to the conclusion that the non-uniform

geometry is a toughening mechanism used to mitigate failure [7, 29, 137]. Numerical ex-

periments are carried out on the rostrum of paddlefish to study the effect of blast loadings

on this complex bio-structure. In the two cases considered, the rostrum is scaled 2 and 4

times its initial size. Similitude theory is applied to scale the weight of the TNT utilized

in the analysis. The parameters involved in the simulation are scaled based on Table A.1
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and Table A.2. Figure A.2 shows the numerical model of the rostrum used in the current

simulations. The length, width, and the thickness of the model are 275 mm, 80 mm, and

27 mm, respectively. Table A.4 gives details of the mesh used in the analysis.

Table A.4

Rostrum mesh details used in the numerical experiments

Rostrum Part Element Type [123] Element Shape Geometric Order Elements
Hard Cartilage C3D8 Hexahedral Linear 10943

C4D4 Tetrahedral Linear 303203
Total nodes 105747

Total elements 314146

Soft Cartilage C3D8 Hexahedral Linear 15745
C4D4 Tetrahedral Linear 146476

Total nodes 53991
Total elements 162221

Tissue C3D8 Hexahedral Linear 93024
C4D4 Tetrahedral Linear 850772

Total nodes 303263
Total elements 943796

A.4.2 Material property

Since the three components of the rostrum exhibit differences in material properties,

the numerical model is constructed with a similar variation of material properties. These

properties were determined from experimental nano-indentation studies carried out on the

rostrum [121]. The three materials selected to represent the behavior of the components
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Figure A.2

Dimension of the rostrum.
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of the rostrum are shown in Table A.5. Table A.6, Table A.7, and Table A.8 depict the

material properties of the components of the rostrum model.

Table A.5

Materials used for component parts of rostrum.

Part Material
Tissue Vinyl ester Epoxy

Hard Cartilage Polyethylene Fibers
Soft Cartilage Polyethylene/Epoxy

(as isotropic)

A.4.3 Force and displacement boundary conditions

The Abaqus/Explicit solver is used for performing the dynamic analysis. Three sets of

numerical experiments are carried out on the rostrum. Table A.9 shows the details of the

trinitrotoluene (TNT) weights and time durations of the numerical experiments performed

in the current study. Displacement boundary conditions on the edges of the rostrum are

fixed for all degrees of motion as depicted in Figure A.3. Fixed boundary conditions are

chosen for the edges to hold the rostrum in a stationary position when it is under the

influence of the shock wave from the blast load.

A.5 Numerical validation of scaling laws

The scaling laws are validated by comparing the values obtained from the numeri-

cal prototype and scaled models with the theoretically expected values from application of

Buckingham Pi theorem. The displacement contours for the prototype and model are plot-
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Table A.6

Vinyl ester epoxy for the Tissue component in rostrum

Commercial Name Ashland Derakane 8084
Elastic Modulus 2.9 GPa

Elongation 8-10%
Ultimate Tensile Strength 76 MPa

Mass Density 1.14 g/cc

Table A.7

Polyethylene fibers for hard cartilage component in rostrum

Commercial Name Honeywell Spectra Fiber
S-900 5600

Elastic Modulus 66 GPa
Elongation 3.5%

Ultimate Tensile Strength 2.18 GPa
Mass Density 1 g/cc

Table A.8

Polyethylele /Epoxy (as isotropic) for soft cartilage component in rostrum

Commercial Name Polyethylene/Epoxy
(as isotropic)

E1 49,762 MPa
E2 1,470 MPa

G12 455 MPa
n12 0.27

Mass Density 1.05 g/cc
F1t 896.32 MPa
F1c 112.31MPa
F2t 4.19 MPa
F2c 4.19 MPa
F12 7.53MPa
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Table A.9

Numerical experiment details.

Scale Length of Weight of Time duration Distance between
Rostrum (mm) TNT (kg) (Sec) model and TNT (mm)

1 275 0.02 0.025 1000
2 550 0.16 0.05 2000
4 1100 1.28 0.1 4000

Figure A.3

Boundary condition on the rostrum
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ted. Parameters such as displacement and stresses are used for comparison along vertical

and horizontal axis of the rostrum. Also, nodal values of displacement, stresses, velocity,

and strain are compared for estimating the percentage deviation from the values predicted

from the scaling laws.

A.5.1 Displacement contours of the rostrum

Figure A.4 displays the non-dimensionalize displacement for the model and the pro-

totype of the rostrum. Using the pi term from Equation A.12, the non-dimensional dis-

placement is plotted. As seen from Figure A.4, displacement shows an identical trend for

the prototype and scaled model. Since the rostrum has fixed-plate boundary conditions

around all the edges, the center of the rostrum experiences maximum displacement. To

further analyze the displacement trend, subsequent sections plot the non-dimensional dis-

placement along the horizontal and vertical axis of the rostrum. The horizontal and vertical

axis chosen for plotting the non-dimensional displacement in the subsequent sections pass

through the region of the rostrum that is experiencing maximum displacement. The minor

differences observed in the non-dimensional displacement in Figure A.4 may be attributed

to the discretization error of the numerical scheme.

A.5.2 Displacement versus distance along horizontal and vertical axis of rostrum

Figure A.5 displays the non-dimensional displacement along the central vertical axis

on the top surface of the rostrum. Displacements along the vertical axis of the rostrum are

plotted as a function of distance for the prototype and scaled models. Since the rostrum is

restrained along its edges, as shown in Figure A.3, zero displacement is observed in these
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Figure A.4

Non-dimensional displacement on top surface of rostrum (a) prototype (b) model scale
factor = 2 (c) model scale factor = 4

locations. For the models scaled to two and four times the original model dimensions, the

displacement shows an identical trend along the vertical axis of the rostrum as displayed in

Figure A.5. The maximum displacement is observed along the center of the rostrum. This

may be because the center region is far from the restrained boundary conditions along the

rostrum edges. As seen in Figure A.5, two peaks in displacement are observed at distances

of approximately x=25 mm and x=50 mm from the tip of the rostrum. The restrained

boundary condition on the rostrum edges may be influencing these maxima. A third peak

is observed at approximately a distance of 110 mm from the tip of the rostrum, which also

corresponds to the maximum displacement observed along the central vertical axis. This

is because the point charge is placed in close proximity to this area. The displacement
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steadily decreases along the vertical axis as displayed in Figure A.5. A very small peak is

observed around x=250 mm distance from the tip of the rostrum. The center cartilage is

stiffer in this region providing strength and rigidity, thus influencing the displacement.

Figure A.5

Displacement versus true distance along vertical axis passing through the center of
rostrum

The non-dimensional displacement shows a similar trend along the vertical axis of the

rostrum for the prototype and scaled models as expected from the similitude theory. The

scale factors used in the current analysis are S = 2 and S = 4, since the base model is

scaled up to twice and four times its original size to analyze the applicability of similitude

theory. Thus, the numerical simulation achieved the expected values as reflected by the

Buckingham Pi theorem.
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Figure A.6 shows the displacement along the horizontal axis of the rostrum located

approximately 63.5 mm from the tip of the rostrum. This position was selected for the

horizontal axis because maximum displacement was observed along this axis of the ros-

trum as depicted in Figure A.4. As before, the non-dimensional displacement is plotted

along the horizontal axis of the rostrum for the prototype and the scaled models. The same

displacement trend is observed in the rostrum prototype and scaled models. As seen in

Figure A.6, zero displacement is observed along the edges of the rostrum owing to the

restrained boundary condition. A peak is observed in displacement at a distance of 15 mm

from the left edge of the rostrum. The displacement decreases as near the center bone of

the rostrum at a distance of 40 mm from the left edge of the rostrum. It is observed that the

center bone provides stability as indicated by the decrease in displacement. At x =70 mm,

another displacement peak is observed. The two displacement peaks are observed near the

region of the complex lattice architecture signifying that they are the major load bearing

members. Therefore, the lattice architecture bears the load while the center bone provides

stiffness/stability to the structural system.

A.5.3 Von-Mises Stress versus distance along horizontal and vertical axis of rostrum

Based on the similitude relations used for the current analysis, the stress should be the

same for scaled models. Figure A.7 shows the Von-Mises stress along the center bone of

the rostrum model used in the current study.

Identical values of stresses are obtained for the scaled model along the vertical axis of

the rostrum when the rostrum is scaled to two and four times its original size. Also, the
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Figure A.6

Displacement versus true distance along horizontal axis of rostrum

stresses observed along the center bone of the rostrum have not crossed the yield stress

represented by the purple line in Figure A.7.

Figure A.8 represents the Von-Mises stress along the horizontal axis of the rostrum.

The stress pattern and value follows the laws of similitude for the prototype and both scaled

cases. The material has reached yield stress in areas where the maximum displacement

was observed. Owing to the unsymmetrical geometry of the rostrum, the load distribution

exhibits an unsymmetrical distribution. The left side of the rostrum shows stresses reaching

beyond the yield stress while the right side shows stresses well below the yield stress. Also,

the center bone located between 30 mm and 60 mm shows a pronounced reduction in the
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Figure A.7

Stress (MPa) versus true distance along vertical axis of rostrum

stresses. The center bone is pivotal in providing stability to the system and experiences a

significantly lower stress level.

A.6 Comparison of scaling laws using numerical studies

Table A.10 and Table A.11 show the comparison of the values obtained from the scaling

laws and the numerical studies conducted on the rostrum. A node on the top surface of the

rostrum was selected to monitor. Since the TNT was placed 1000 mm away from the

center of the rostrum, the center node shown in Figure A.9 was selected for comparing the

scaling laws with numerical results. The numerical values for the same node are compared

for the prototype and the scaled models. As seen in the comparison table the errors are
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Figure A.8

Stress (MPa) versus true distance along horizontal axis of rostrum

within a maximum of 3.39% percentage. Hence, the numerical experiments have verified

the similitude parameters identified by the Buckingham Pi theorem within a reasonably

acceptable error range. The numerical errors may be the result of the discretization error

involved in the scheme.

A.7 Conclusion

Similitude analysis can be employed to identify similarities in the behavior of models

at different scales. The current research has demonstrated that deformation of a structure

due to blast impact can be represented in terms of dimensionless pi terms by application

of the Buckingham Pi theorem. This study presents the development of similitude re-
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Figure A.9

Node picked for comparison of numerical results with scaling laws

Table A.10

Comparison of physical parameters obtained from scaling laws and numerical
experiments on the rostrum between prototype and model scaled by a factor of 2

Prototype Scaled model (S=2) Percentage
From Scaling From Error

Laws numerical
experiment

Von Mises stresses in MPa 21.9543 21.9543 22.0979 0.6541
Maximum principal stresses 0.618881 0.618881 0.601492 2.8097

in MPa
Spatial displacement in mm 1.92884 3.85768 3.86485 0.1859

Spatial velocity in mm/s 514.26 514.26 507.276 1.3581
Logarithmic strain in mm/mm 0.00250712 0.00250712 0.00251508 0.3175
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Table A.11

Comparison of physical parameters obtained from scaling laws and numerical
experiments on rostrum between prototype and model scaled by a factor of 4

Prototype Scaled model (S=4) Percentage
From Scaling From Error

Laws numerical
experiment

Von Mises stresses in MPa 21.9543 21.9543 22.0753 0.5511
Maximum principal stresses 0.618881 0.618881 0.597848 3.3986

in MPa
Spatial displacement in mm 1.92884 7.71536 7.66811 0.6124

Spatial velocity in mm/s 514.26 514.26 506.477 1.5134
Logarithmic strain in mm/mm 0.00250712 0.00250712 0.00251336 0.2489

lationships for a simple system where the solution is known to verify the application of

similitude approach. Numerical experiments were carried out on the rostrum of the pad-

dlefish to demonstrate the development and application of similitude laws for blast loading

for complex structural models. From the analysis presented, it is evident that deformation,

stress, velocity, and strains have been successfully scaled within a reasonably acceptable

error range. The strategy presented in this study can be employed to develop and apply

similitude relations through the application of Buckingham Pi theorem.
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